Monitoring & Diagnostics potentials

POWERTECH

Example 1: Condenser pressure

Condenser pressure difference detected: 7 mbar Additional fuel: 6 MJ/s reaching 140.000 €/month

Example 2: Minimum load stabilization

and the second se

KISSY – power plant information system

POWERTECH

KISSY provides the opportunity to benchmark power plants by:

- Compiling availability data and evaluating performance indicators
- Comparing the indicators of single plants with indicators of peer groups

Characterics:

- Size of power plant capacity
- Fuels by capacity
- Furnace type by capacity
- Units by single or dual boiler operation
- Units by sub-critical or supercritical pressure

Benchmarking is a good way to assess the O&M performance of the own plant(s). It provides necessary transparency about focus areas for maintenance interventions.

/ 🛃 🛃 🚵 🚮

TOP 20 components with highest unplanned unavailability

Evaluation of 3,633 incidents without external influence Collective: fossil fired units; commis. date \ge 2000; \ge 200 MW gross capacity; all countries Time Period 2000 to 2013

KISSY – root cause analysis for all plants

TOP 20 components with highest unplanned unavailability

Evaluation of 66,330 incidents without external influence Collective: fossil fired units, ≥ 200 MW gross capacity, all countries Time Period 2000 to 2013

POWERTECH

unplanned UA-Energy by KKS-Codes of reporting years of lignite and hard coal power plants > 450 MW

Meldejahr = reporting years

Organizational structure of a power plant team

Level 0-1 CEO, MD Top Management Senior Level, >20 years experience

> Level 0-1 CEO, MD Top Management >20 years experience

Level 1-2 Plant Manager Senior Management >15 years experience

Level 3 Senior Engineering Middle Management >10 years experience

Level 4 Junior Engineering Assistant Managers / Specialists >5 years experience

Level 5 Technicians / Fitters Senior operational craft >5 years experience

Level 6 Helpers / Trainees Operators and manual laborer No or few experience

The organization of a power plant usually comprise seven hierarchical level. Besides the size of the plant the number of employees depends on the subcontracting philosophy.

VGB PowerTech e.V.|FOLIE 8

and the second second

Technical challenges

- reduction of full-load hours
- increased number of start-ups and load changes
- potential of reduced economic
 viability due to reduced life time
- technical development is focussed to ensure:
 - \rightarrow more flexibility (load changes)
 - \rightarrow reduction of minimal load
 - \rightarrow high availibility and reliability
 - → possibility of island operation and fast cold start

Skill challenges

- less predictability and seasonal variations and shut-down periods
- flexible working hours schemes
- variable areas of working with different technologies
- increased complexity
- → continuous learning and skill enhancement

The Kraftwerksschule is the benchmark for power plant training in Germany. The training of operators is in the focus of the skill program.

VGB PowerTech e.V.|FOLIE 10

Documentation of best practices, expertise and lessons learnt

- not binding
- proven industry standard
- >300 standards, guidelines and instruction sheets, 100 available in English; 10-20 new/updated releases per year

Structure of a standard or guideline

- Originators of the standard
- Introduction (technical basics and scientific fundamentals)
- Technical details and recommendations (80 % of the guideline)
- Literature and publications (mainly articles in technical press)
- Related standards and norms (ASME, ISO, VdTÜV, DIN etc.

VGB-Standard

for Type, Operation and Maintenance of Flue Gas Desulphurisation Plants (FGD)

VGB-Standard-S-015-2011-EN First edition 2011

Published by VGB PowerTech e.V.

www.vab.org

To be ordered at: VGB PowerTech Service GmbH Verlag technisch-wissenschaftlicher Schriften Postfach 10 39 32, 45039 Essen Tel. +49 2018 128-200 E-Mait: mark@ygb.org 159M 5975-36575-36

core group of experts (<15 persons) prepares the document

POWERTECH

the second s

Engineering	Procurement & Manufacturing	Construction & Commissioning	O & M
VGB-S-008	VGB-S-166	VGB-S-013	VGB-S-506
Recommendations for the	Quality Assurance in the	Construction and	Condition Monitoring and
SIL classification of	Manufacture of	installation supervision in	Inspection of
safety-related systems	Generators	the manufacture and	Components of Steam
and systems in the water		assembly of water-tube	Boiler Plants, Pressure
circuit	VGB-R101e	boilers and associated	Vessel Installations and
	Guideline for Ordering	systems in thermal plants	High-Pressure Water and
VGB-S-010	High-Capacity Steam		Steam Pipes
Feed Water, Boiler Water	Boilers	VGB-S-513	
and Steam Quality for		Internal Cleaning of	VGB-S-517
Power Plants/Industrial	VGB-R145e	Water-Tube Steam	Guidelines for rating the
Plants	Guide for Procurement of	Generating Plants and	microstructural
	Steam Turbine Plants,	Associated Pipework	composition and creep
VGB-R170e	Part A, B and C		rupture damage of creep-
Design standards for		VGB-S-504	resistant steel for high
Instrumentation and		Inspection and Testing of	pressure pipelines and
control equipment		Large Forgings and	boiler components and
		Castings for Steam and	their weld connections
VGB-R455e		Gas Turbine Generators	

VGB-R167e

Overhaul recommendations for turbo-generators

VGB PowerTech e.V.|FOLIE 14

Cooling Water Guideline

VGB Standards – an example

Example: Internal Cleaning of water-tube steam generating plants and associated pipe-work issued in 2015 (revised version)

- aims at cleanliness of the inner surfaces
- includes all kind of cleaning procedures: flushing, acid cleaning, blow through, alkaline boiling
- reflects recent experiences made in comissioning of new built plants
 - new materials are included like Ni-based alloys and austenitic steels
 - completely revised chapter about blow-through
 - comprehensive quality and preparing recommendations

Metal release at 1 % HF and 60 °C after 2 hours

and the second se

cleaning

Ρ	0	W	Е	R	Т	Е	С	Н
	\sim		_			_	~	

Country	Name of Plant	Name of Company	No. Units	Unit Cap. MW (gr.)	Main Fuel	Life/RH Steam Temp. (°C)	COD (Y)	St eam Blowing	Acid cleaning	High speed flushing
Germany	Neurath F&G	RWE Power	2	1100	LIG	595/605	Jul 12		х	х
Germany	Datteln 4	E.ON	1	1100	нс	600/620	?		х	х
Germany	Moorburg A-B	Vattenfall Europe	2	820	нс	600/610	2015		Х	x
Germany	Boxberg R	Vattenfall Europe	1	675	LIG	600/605	Okt 12		х	х
Germany	GKM 9	Grosskraftwerk Mannheim AG	1	911	нс	600/610	2015		Х	х
Germany	RDK8	EnBW	1	912	нс	600/620	2014		х	х
Germany	Walsum 10	STEAG/EVN	1	725	HC	610/620	Nov 13		х	х
Germany	Lünen	Trianel	1	750	нс	600/610	Jan 14		х	х
Germany	Wilhelmshaven	GDF Suez	1	800	НС	600/610	Apr 14		х	х
Germany	Westfalen D&E	RWE Generation	2	800	НС	600/610	Sept 14		х	х
Netherlands	Eemshaven	RWE Power	1	1600	HC	600/610	Jan 15		х	х
Netherlands	Maasvlakte	Electrabel	1	750	НС	600/610	2013		х	х
Netherlands	Maasvlakte 3	E.ON Benelux	1	1100	HC	600/620	2015		Х	X
South Africa	Medupi	Eskom	6	4800	НС	600/620	2015	Х	х	х

Summary

- → Excellence in operation is a lot about transparency of the plant status.
- → Modern I&C equipment and analyzing instruments are useful tools to identify improvement potential.
- → To sustain the improvement process benchmarking provides useful information to assess own performance.

- \rightarrow Fleet management is a good way to optimize maintenance costs.
- → Guidelines and standards that are based on industrial best practices document valuable experiences.

Transparency of the plant status, skilled personnel and the application of best practices are key to excellence in O&M.

17

Thank you

for your interest!

Contact:

Dr. Oliver Then / Dr. Claudia Weise

Power Plant Technologies

Deilbachtal 173

45257 Essen / Germany

Phone: +49 201 8128 250 / 335

Mobile: +49 160 844 450

oliver.then@vgb.org / claudia.weise@vgb.org

www.vgb.org

