

SCR-Catalyst Management

Dr. Dirk Porbatzki UTG / Catalyst & Oil Management

We are Uniper

2.5GW

Hydroelectric plants 4.25GW

Trading

Energy sales (small to large customers, electricity & gas)

UNI Der

Company data: October 2016 2

Energy Services is bringing Uniper's competencies to the global stage

Uniper & India Power have formed a strategic partnership to develop and service the power sector

India Uniper Power Services

- 50:50 joint venture in power plant services
- A value-based service provider
- Offering a broad range of flexible and customised services
- Headquartered in Kolkata

The joint venture will combine strengths of strong partners with complementary scope and portfolio. Key service offerings:

- Plant operations and maintenance,
- Asset monitoring software and analytical tools,
- Fuel evaluation and optimisation (e.g. blending of Indian and Indonesian coals)
- Increasing flexibility of units; Lifecycle extension,
- Supply and integration of pollution control equipment and systems, etc.

Content

- 1. Catalyst Management Overview
- 2. UTG Test Facilities
- 3. From Catalyst Testing to Catalyst Management
- 4. SCR-Impact on Downstream Equipment
- 5. Mercury Oxidation

SCR DeNOx Basics

Desired Reactions

 $\begin{array}{l} 4 \hspace{0.1cm} \mathsf{NO} + 4 \hspace{0.1cm} \mathsf{NH}_3 + \mathsf{O}_2 \rightarrow 4 \hspace{0.1cm} \mathsf{N}_2 + 6 \hspace{0.1cm} \mathsf{H}_2\mathsf{O} \\ \\ \mathsf{NO} + \hspace{0.1cm} \mathsf{NO}_2 + 2 \hspace{0.1cm} \mathsf{NH}_3 \rightarrow 2 \hspace{0.1cm} \mathsf{N}_2 + 3 \hspace{0.1cm} \mathsf{H}_2\mathsf{O} \\ \\ \mathsf{6} \hspace{0.1cm} \mathsf{NO}_2 + 8 \hspace{0.1cm} \mathsf{NH}_3 \qquad \rightarrow 7 \hspace{0.1cm} \mathsf{N}_2 + 12 \hspace{0.1cm} \mathsf{H}_2\mathsf{O} \end{array}$

 $Hg + 2 HCI + \frac{1}{2} O_2 \rightarrow HgCI_2 + H_2O$

Undesired Reactions $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ (SO₂ Conversion) $NH_3 + SO_3 + H_2O \rightarrow NH_4SO_4$ (Ammonia Bisulfate Formation) $HgCl_2$ reduction by NH_3 and SO_3

Operating Temperatures

uni per

Typical positions for SCR system installions

uni per

SCR-Fundamentals

Dr. Porbatzki, Uniper Technologies GmbH, India November 2016

Numerical example for NOx and NH₃ conversion

Uniper Technologies Know How for SCR Management

- Operation of 10 SCR pilot plants from 1985 1987
- Design and operation of a certified bench scale SCR test reactor since 1988
- Development of a MARA system for AIG tuning since 1989
- Design of a catalyst management system since 1990
- Commercial catalyst management services since 1992 at coal- and oil-fired units and waste incineration plants
- Experience from the operation of >40 SCR reactors in Uniper's power plants
- More than 150 customers worldwide, mostly with several SCR reactors
- Detailed test results of almost all commercially available catalyst materials
- Design and operation of a bench test reactor in Columbus/Ohio 2004-2011
- Implementation of a lifetime database / calculation tool (LEONID) since 2004
- 80% of coal fired power stations in Germany use Uniper's services

Why SCR Management?

- Catalyst in thermal power stations unavoidably deteriorate over time
- SCR catalyst is the most expensive "spare part" purchase in a power station

- Optimizing operation of installed catalyst volume by e.g. utilization of available design margins
- Forecasting the most economical catalyst replacement and regeneration schedules according to existing outage plans
- Best choice of appropriate catalyst material (price, technical properties)
- On time RFQ's and PO's for necessary new catalyst material or regeneration
- → Make rational financial decisions independent of catalyst suppliers / catalyst regenerators

Types of commercially available SCR catalyst

Corrugated catalyst glass fiber support

Plate-type metal support High Ash Content

Focuses of modern SCR Management in support of plant operations

Dr. Dirk Porbatzki, Catalyst Management, India November 2016

Uniper Kraftwerke GmbH - Scholven Power Station Unit F

- Unit Capacity
- Fuel

DENOx Plant

- Type of Process High Dust SCR
- Capacity
- 2 x 1.200.000 m3/h STP
- Arrangement High Dust

740 MW

Hard Coal

- Type of Catalysts Honeycomb 7-pitch
- 4 catalyst layers x 314 m³
- NOx removal 78%
- Commissioning 1989

Example: Catalyst Sampling (plates)

inspection door

- One layer of catalyst modules
- 12x9 modules á 1x2x1 m³ ~216 m³

X: pull positions (plates)

 Representative samples over the cross section

March 2005 | Dep. VAU | Bs

1

Visual Inspection of AIG, SCR Reactor

plugged NH₃-injection system

plugged honeycomb catalyst March 2005 | Dep. VAU | Bs

Visual reactor inspection and SCR catalyst sampling often provides valuable first hand information about the SCR reactor and reasons for potential performance problems

flue gas bypass

plugged plate-type catalyst

Example: Catalyst Inspection - Plugging & Piles

March 2005 | Dep. VAU | Bs

Example: Catalyst Inspection - Erosion

Dr. Dirk Porbatzki, Catalyst Management, India November 2016

19

Catalyst Deactivation

Catalyst Testing under power plant conditions

- Determination of the realistic NOx reduction capability fully transferable to the full scale plant according to VGB standard S302
- Calculation of catalyst activity and potential of each catalyst layer and whole SCR reactor
- Potential forecast in combination with the calculated minimum potential
- optimized catalyst reloading
 / regeneration strategy

Example: Long Term Deactivation of High Dust Catalyst (best case)

uni per

Example: Long Term Deactivation of High Dust Catalyst (real case)

Example: Long Term Deactivation of High Dust Catalyst (worst case)

Potential forecast – compliance with NO_x and NH₃ limits

Catalyst Deactivation

NOx emission values remain stable

Dr. Porbatzki, Uniper Technologies GmbH, India November 2016

Catalyst Deactivation - Detection of Mechanisms (e.g. XRF Analysis)

SCR Impact on Downstream Equipment, example: SO₂ to SO₃ conversion

sulfuric acid plume, visible ~2 ppm SO3

SO₂ conversion:

- acid emissions
- corrosion
- plugging (increasing pressure loss)

Example: SO₂ to SO₃ Conversion Rate throughout a Catalyst Lifetime

- Experience shows that SO₂ to SO₃ conversion does not decrease throughout a catalyst lifetime
- Conversion <u>can</u> increase if iron is present in/on the catalyst surface. Data has shown that conversion decreases in the presence of H₂SO₄ (originated by SO₃ and moisture) by mobilizing iron into the micropore system.
- The iron can have different sources: fly ash, metal grid (plate type catalysts), modules metal structure, corroded particles carried over by the flue gas, ...

SO₂ conversion; Ammonia (bi)sulphates

ABS dew point

- Important low load / partial situations
- Affected by partial pressures of NH₃ and SO₃, both can vary over lifetime
- Note: graph not valid for SCR-catalyst pore systems due to different conditions inside/outside the pores (pressure dependancy)

Catalyst management – Leonid database and calculation tool

uni per

Dr. Dirk Porbatzki, Catalyst Management, India November 2016

www.uniper.energy

www.uniper-engineering.com

For further information or queries please contact:

Dr. Dirk Porbatzki Uniper Technologies Dirk.Porbatzki@uniper.energy Doug Waters Uniper Energy Services Doug.Waters@uniper.energy Animesh Kumar Uniper Energy Services Animesh.Kumar@uniper.energy

Future Aim: Advanced catalyst management considering the Hg-oxidation on catalysts

- Example: Influence of catalyst deactivation (increased NH₃-slip) on Hg oxidation and possible effects (Leonid database and calculation tool)
 - Shifting Hg-active layers downstream

- Effect: Possibly lower total Hg oxidation rate