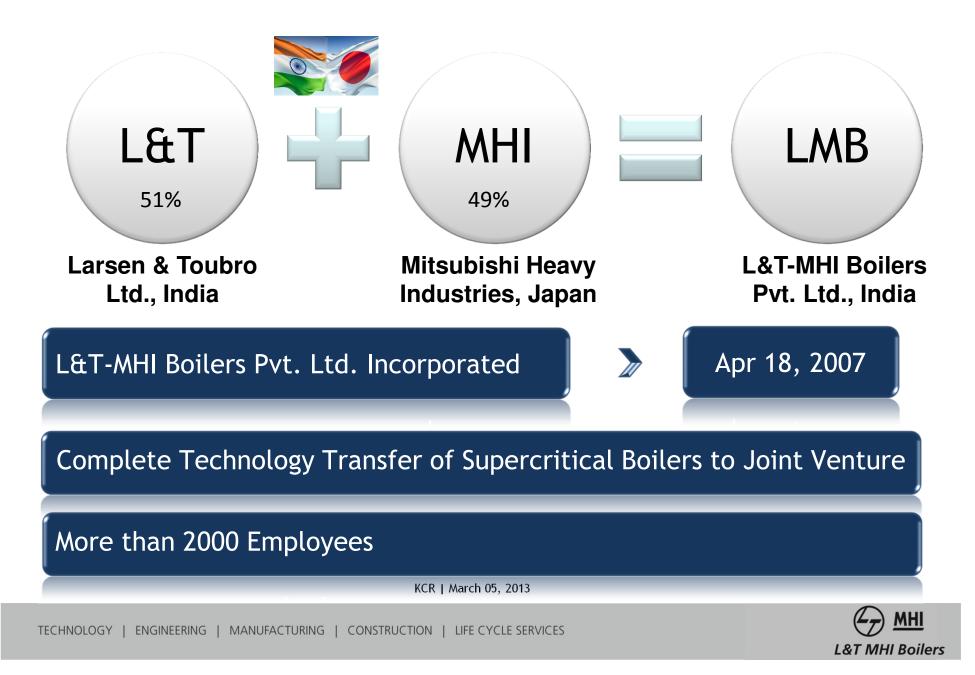
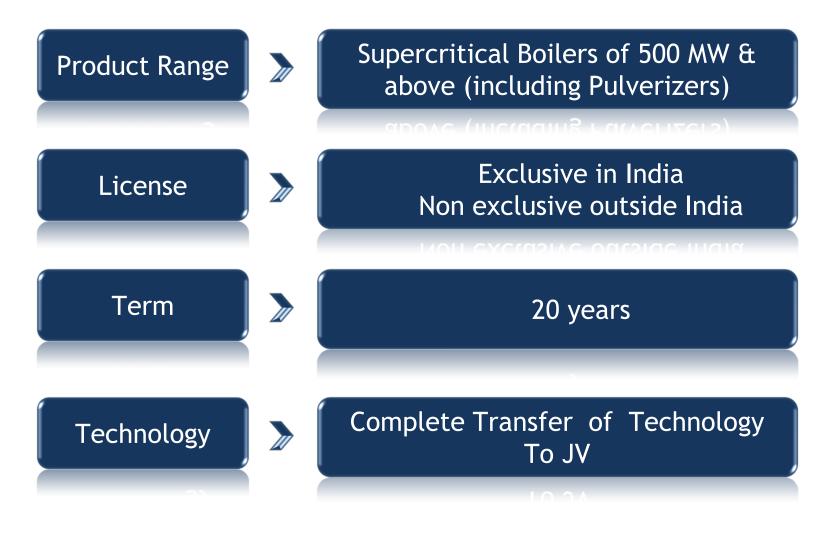
ULTRA SUPERCRITICAL BOILERS

K.C.RAO Date 05th Mar, 2013

TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES

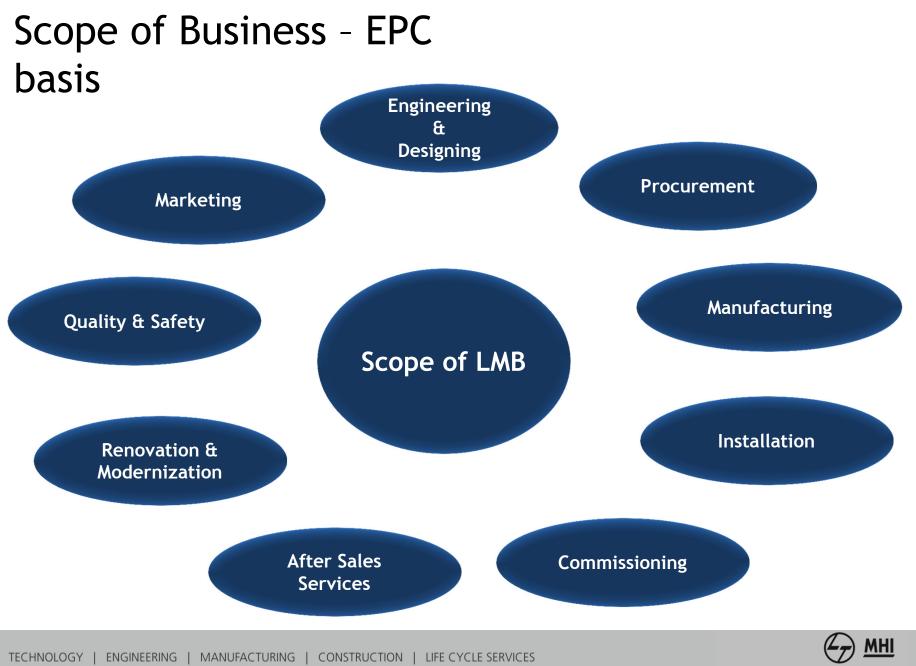

INTRODUCTION TO L&T- MHI BOILERS


KCR | March 05, 2013

TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES

L&T-MHI Boilers (LMB)

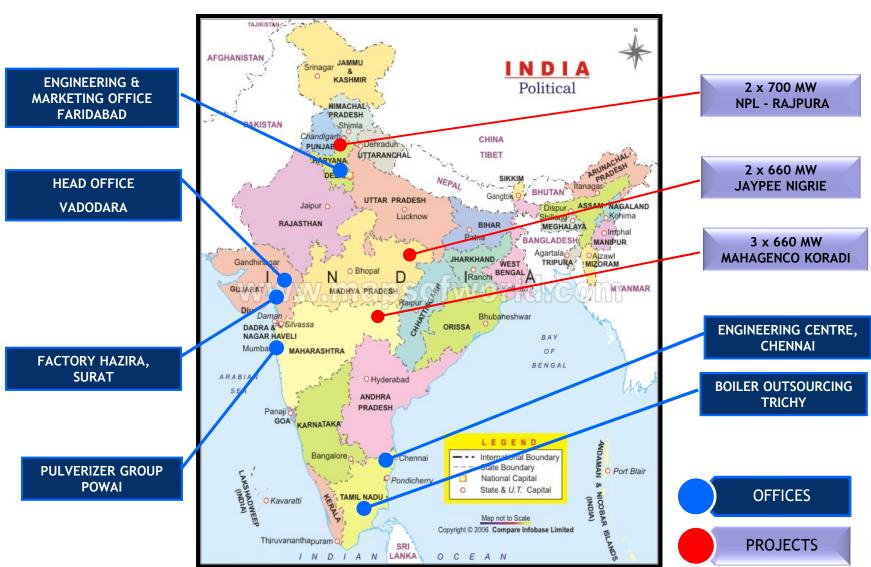
Joint Venture Highlights

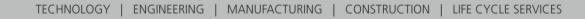


Joint Venture Highlights

TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES

L&T MHI Boilers


PROJECT & OFFICE LOCATIONS


L&T MHI Boilers

KCR | March 05, 2013

TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES

Project Sites and Office locations

Projects Under Execution

Boiler Overview Unit-1 - JAYPEE NIGRIE

KCR | March 05, 2013

TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES

Boiler Overview Unit-2- JAYPEE NIGRIE

KCR | March 05, 2013

TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES

CONTENTS

- 1. What is USC Boiler
- 2. Trends of USC units
- 3. Supply records of USC
- 4. Feature of USC Boiler
- 5. Impact on present SC design

What is USC Boiler?

Subcritical :

Pressure : 16.7 M pa

Temperature: 538/538 Deg-C or 538/560 Deg-C

Supercritical(SC) :

Pressure : 24.1 M pa

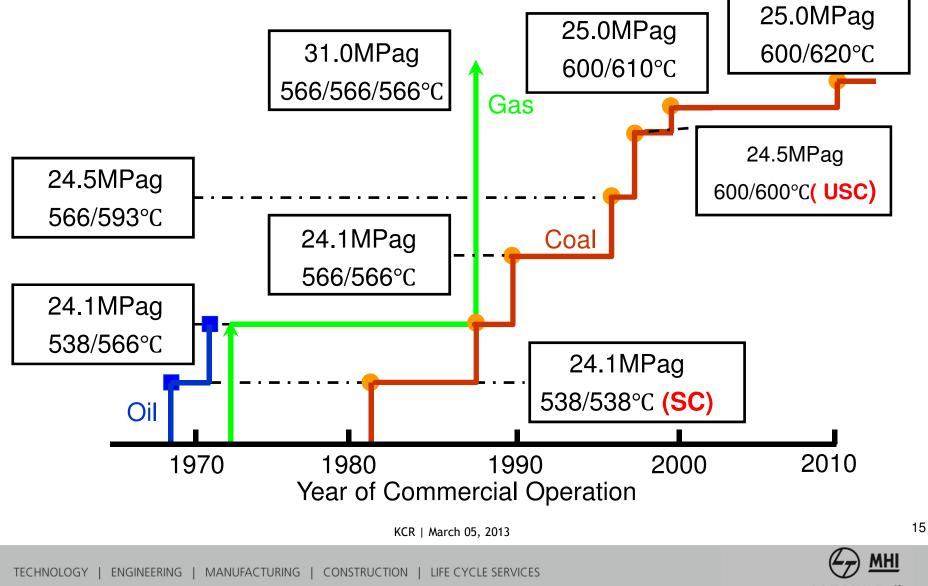
Temperature: 538/560 Deg-C to 566/593 Deg-C

Ultra Supercritical(USC):

Pressure : 24.1 to 31.0 M pa

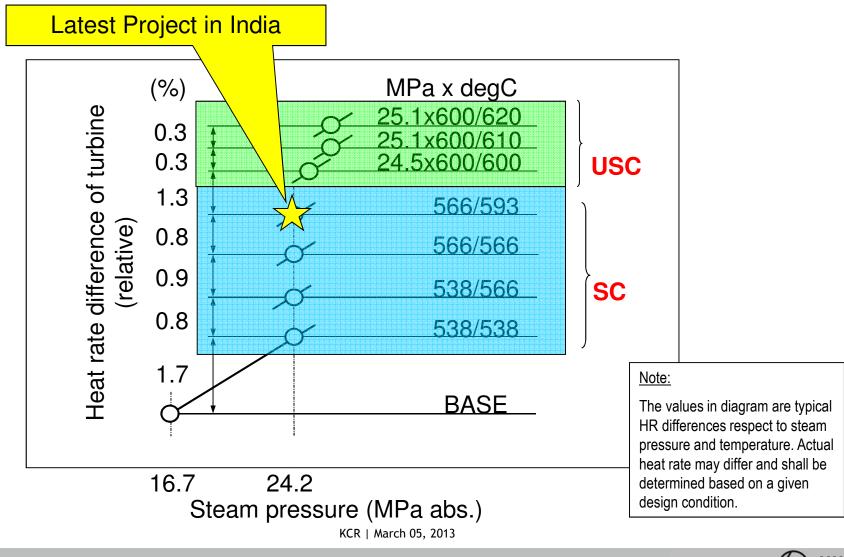
Temperature: 593/593 Deg-C to 600/620 deg.c

KCR | March 05, 2013



1. What is USC Boiler

- 2. Trends of USC units
- 3. Supply records of USC
- 4. Feature of USC Boiler
- 5. Impact on present SC design


KCR | March 05, 2013

Evolution of Steam Pressure & Temperature of Thermal Power Plant in Japan

L&T MHI Boilers

Thermal Efficiency improved by Steam Conditions

Technoeconomic comparison – Subcritical Vs Supercritical Vs Ultra Supercritical Boilers

Capacity	: 700 MW
Fuel	: Indian coal with 42 % ash
Fuel GCV	: 3300 kCal/kg

Description	Unit	Subcritical 16.7 M pa 538/538 deg.c	Supercritical 24.1 M pa 566/593 deg.c	4.1 M paSupercritical 24.1 M paSub Vs SC		Reduction Sub Vs USC
Turbine Heat rate	kCal / kWh	1918	1838	1814	80(4.2%)	104(5.5%)
Boiler efficiency	%	87 %	87%	87%	0	0
Plant heat rate	kCal / kWh	2207	2113	2085	94(4.2%)	121(5.5%)
Coal consumption	MM T/Annum	3.676	3.524	3.477	0.152(4.2%)	0.199 (5.5%)
Ash Generation	MM T/Annum	1.544	1.48	1.46	0.064(4.2%)	0.084 (5.5%)
CO2	MM T/Annum	7.278	6.981	6.888	0.297(4.2%)	0.39 (5.5%)
SOx	MM T/Annum	0.0230	0.0221	0.0218	0.0009(4.2%)	0.0012 (5.5%)

* Calculation with 90% PLF

KCR | March 05, 2013

17

TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES

Technoeconomic comparison – Subcritical Vs Supercritical

Fuel : Indian coal with 42 % ash and GCV of 3300kCal/kg

DSCRIPTION	700 MW SUBCRITICAL VS SUPERCRITICAL IN CRORES	700 MW SUBCRITICAL VS SUPERCRITICAL IN CRORES	700 MW SUBCRITICAL VS SUPERCRITICAL IN CRORES
COAL COST	1500 RS/TON	2000 RS/TON	2500 RS/TON
Reduction in Coal cost per annum	22.8	30.4	38
Carbon credit benefit per annum @10Euro/MT (1Euro= Rs.60)	17.8	17.8	17.8
Total cost Benefit per annum	40.6	48.2	55.8
NPV considering plant life of 30 years with 5 % escalation in coal cost (Sub Vs SC) COAL COST	301	402	502
NPV considering plant life of 30 years with 5 % escalation in coal cost (Sub Vs SC) COAL COST & CDM BENEFIT	537	637	737

Technoeconomic comparison – Subcritical Vs Ultra Supercritical

Fuel : Indian coal with 42 % ash and GCV of 3300kCal/kg

DSCRIPTION	700 MW SUBCRITICAL VS ULTRA SUPERCRITICAL IN CRORES	700 MW SUBCRITICAL VS ULTRA SUPERCRITICAL IN CRORES	700 MW SUBCRITICAL VS ULTRA SUPERCRITICAL IN CRORES
COAL COST	1500 RS/TON	2000 RS/TON	2500 RS/TON
Reduction in Coal cost per annum	29.8	39.8	49.8
Carbon credit benefit per annum @10Euro/MT (1Euro= Rs.60)	23.4	23.4	23.4
Total cost Benefit per annum	53.2	63.2	73.2
NPV considering plant life of 30 years with 5 % escalation in coal cost (Sub Vs USC) COAL COST	394	526	658
NPV considering plant life of 30 years with 5 % escalation in coal cost (Sub Vs USC) COAL COST & CDM BENEFIT	703	835	967

Technoeconomic comparison – Supercritical Vs Ultra Supercritical

Fuel	: Indian	coal	with	42	%	ash	and	GCV	of	3300kCal/kg	0

DSCRIPTION	700 MW	700 MW	700 MW		
	SUPERCRITICAL VS	SUUPERCRITICAL VS	SUUPERCRITICAL VS		
	ULTRA SUPERCRITICAL	ULTRA SUPERCRITICAL	ULTRA SUPERCRITICAL		
	IN CRORES	IN CRORES	IN CRORES		
COAL COST	1500 RS/TON	2000 RS/TON	2500 RS/TON		
Reduction in Coal cost per annum	7.05	9.4	11.75		
Carbon credit benefit per annum @10Euro/MT (1Euro= Rs.60)	5.5	5.5	5.5		
Total cost Benefit per annum	12.55	14.9	17.25		
NPV considering plant life of 30 years with 5 % escalation in coal cost (Sub Vs USC) COAL COST	93	124	155		
NPV considering plant life of 30 years with 5 % escalation in coal cost (Sub Vs USC) COAL COST & CDM BENEFIT	166	197	228		

KCR | March 05, 2013

1. What is USC Boiler

- 2. Trends of USC units
- 3. Supply records of USC
- 4. Feature of USC Boiler
- 5. Impact on present SC design

MHI Reference List of USC Boilers

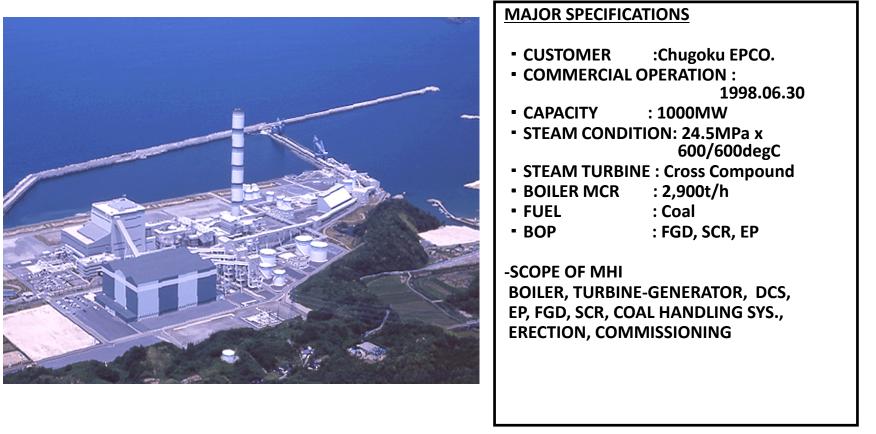
> MHI/LMB has adequate experience for over 600/600 boiler.

Customer Station	MW	Steam Condition (°C)	Fuel	C/O
Soma Joint EPCO Shinchi #2	1,000	538/566	Coal	1995
Tohoku EPCO Haramachi #1	1,000	566/593	Coal	1997
Chugoku EPCO Misumi #1	1,000	600/600	Coal	1998
Hokuriku EPCO Tsuruga #2	700	593/593	Coal	2000
Kyusyu EPCO Reihoku #2	700	593/593	Coal	2003
Kansai EPCO Maizuru #1	900	595/595	Coal	2004
Tokyo EPCO Hirono #5	600	600/600	Coal	2004
China Yuhuan (4 units) Licenser	1,000	600/600	Coal	2006
China Taizhou (2 units) Licenser	1,000	600/600	Coal	2007
PJ in China (15 units) Licenser	600, 660	600/600	Coal	2007~
China Jinling (1 units) Licenser	1,000	600/600	Coal	2009
China Chaozhou (2 units) Licenser	1,000	600/600	Coal	2010
P.T. Paiton Energy Paiton III	866	538/566	Coal	(2012)
Projects in India (11 units)	660, 700	565/593	Coal	(2013~)

KCR | March 05, 2013

MHI Reference List of USC Turbines

MHI/LMTG has plenty of experience for over 600/600 steam turbines.


Customer Station	MW	Steam Condition (°C)	Fuel	C/O
Chubu EPCO Hekinan #3	700	538/593	Coal	1993
Hokuriku EPCO Nanao-Ota #1	500	566/593	Coal	1995
EPDC Matsuura #2	1,000	593/593	Coal	1997
Chugoku EPCO Misumi #1	1,000	600/600	Coal	1998
EPDC Tachibanawan #2	1,050	600/610	Coal	2000
Kansai EPCO Maizuru #1	900	595/595	Coal	2004
Tokyo EPCO Hirono #5	600	600/600	Coal	2004
China Yingkou (2 units) Licenser	600	600/600	Coal	2007
China Kanshan (2 units) Licenser	600	600/600	Coal	2008
China Heyuan (2 units) Licenser	600	600/600	Coal	2009
ENEL Torrevaldaliga Nord (3 units)	678	600/610	Coal	2009
XCEL Comanche #3	830	566/593	Coal	2010
Tokyo EPCO Hirono #6	600	600/600	Coal	(2013)
Korea EWP Danjin (2 units)	1000	600/600	Coal	(2015/6)

KCR | March 05, 2013

Chubu EPCO Misumi #1 Chubu EPCO Misumi #1

Turn Key 1000MW Coal-Fired Supercritical Plant including Major BOPs Customer: Chugoku Electric Power Company

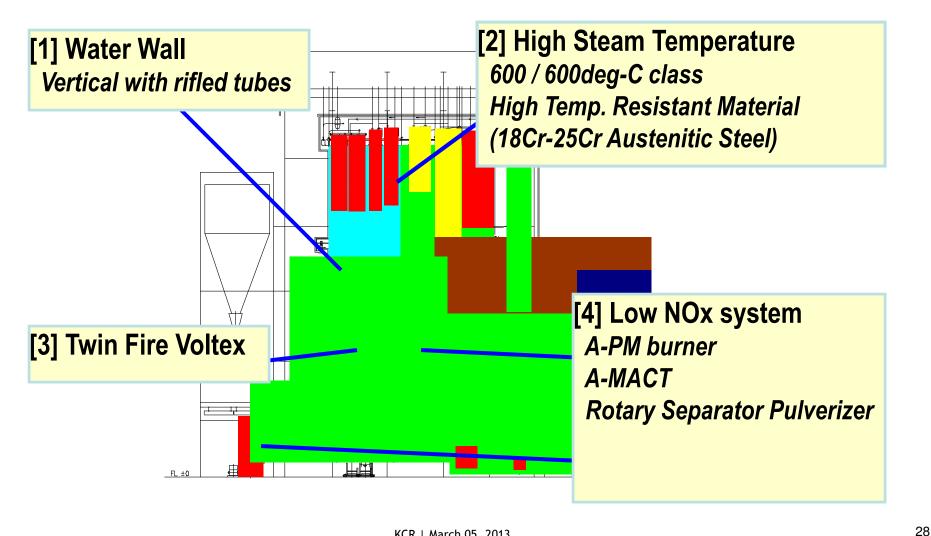
Kansai EPCO Maizuru #1 Kansai EPCO Maizuru #1

Turn Key 900MW Coal-Fired Supercritical Plant Customer: Kansai Electric Power Company

Tokyo EPCO Hirono #5 Tokyo EPCO Hirono #5

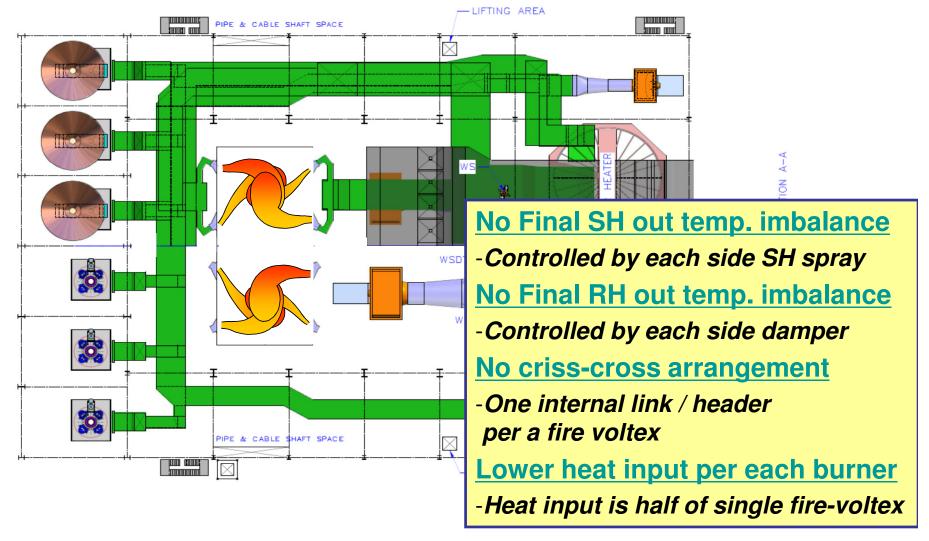
Turn Key 600MW Coal-Fired Supercritical Plant Customer: Tokyo Electric Power Company

KCR | March 05, 2013

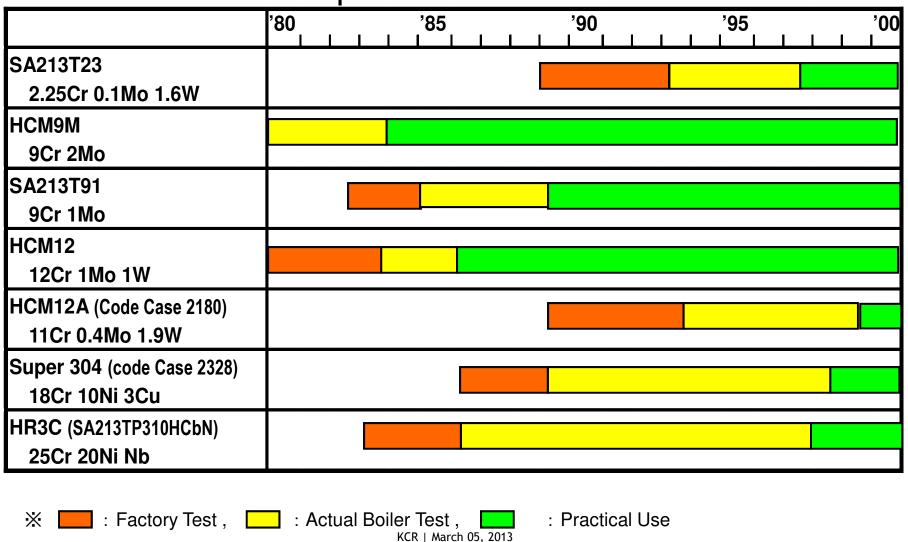

1. What is USC Boiler

- 2. Trends of USC units
- 3. Supply records of USC
- 4. Feature of USC Boiler
- 5. Impact on present SC design

L&T MHI Boilers



Features of MHI USC Coal-Fired Boiler


KCR | March 05, 2013

Design Feature of Mitsubishi Twin fire-vortexes design

KCR | March 05, 2013

History of Tube Material MHI Field Test for Supercritical Boilers

TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES

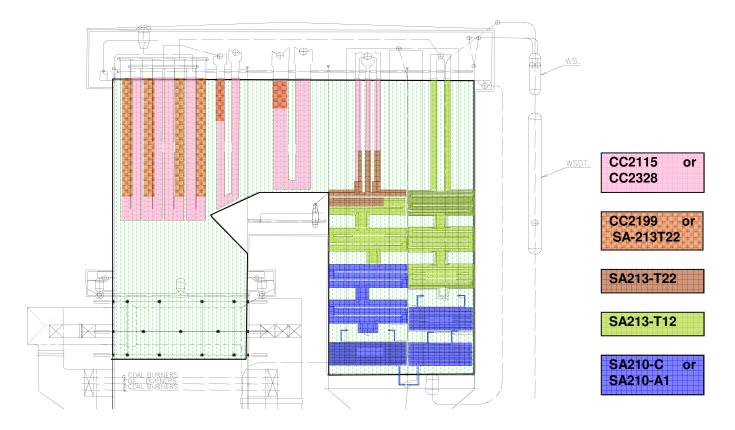
Ultra Supercritical Sliding Pressure Boiler High Temperature Resistant Material

• MHI has, in association with the tubes and pipes manufacturers, strived to continuously develop new grades of materials for use in high temperature applications.

18Cr Austenitic

9Cr Ferrite

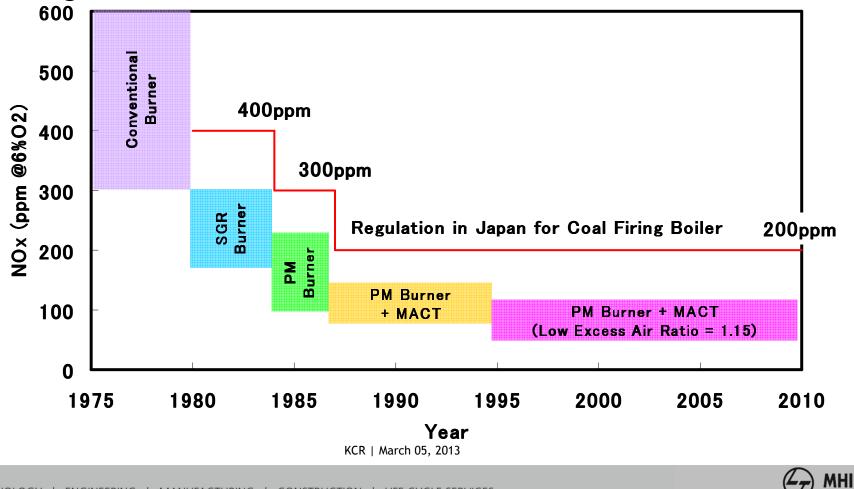
- Improved creep and fatigue resistance suitable for cyclic operations.
- High strength in high temperature zone
- Use of advanced materials such as
 - Code Case 2115 25Cr Austenitic
 - Code case 2328
 - SA-213T92 and SA-335P92
 - Code Case 2199 (SA-213T23) 2 1/4Cr Ferrite
 - KCR | March 05, 2013


Ultra Supercritical Sliding Pressure Boiler High Temperature Resistant Material

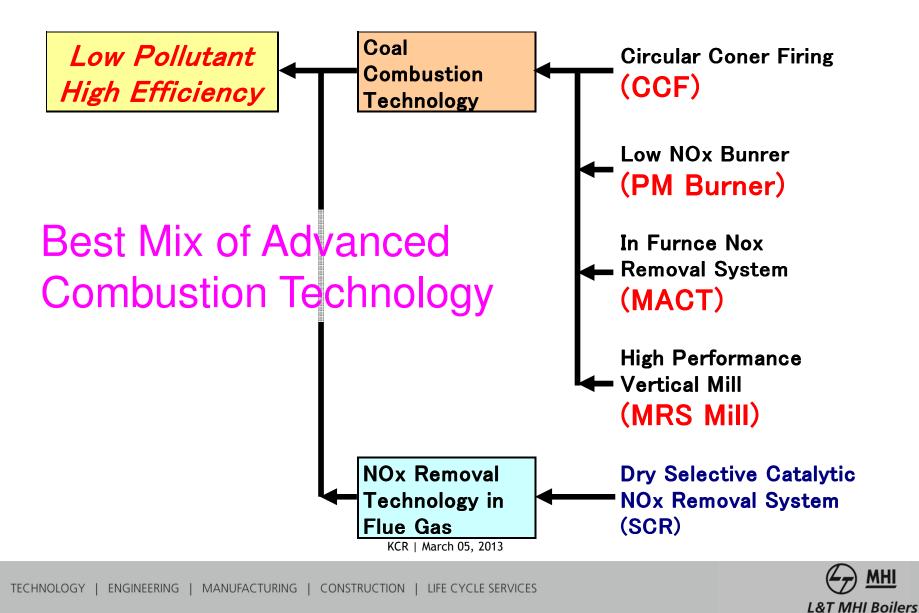
		Superheater			Reheater		Eco.	ww
		3rd SH	2nd SH	1ry SH	2nd RH	1ry RH		
25Cr 18Cr	Code Case 2115 Code Case 2328 SA213TP347H	V	V		v	v		
9Cr	SA213T91(unheated zone)	V	V		V	V		
2.25Cr	SA213T22		V		V	V		
1Cr	SA213T12		V	V	V	V		V
Carbon Steel	SA192 SA210					V	V	

KCR | March 05, 2013

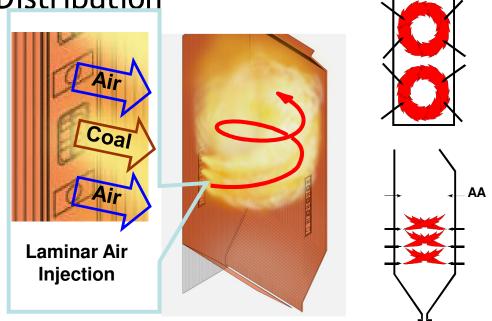
Ultra Supercritical Sliding Pressure Boiler High Temperature Resistant Material




KCR | March 05, 2013

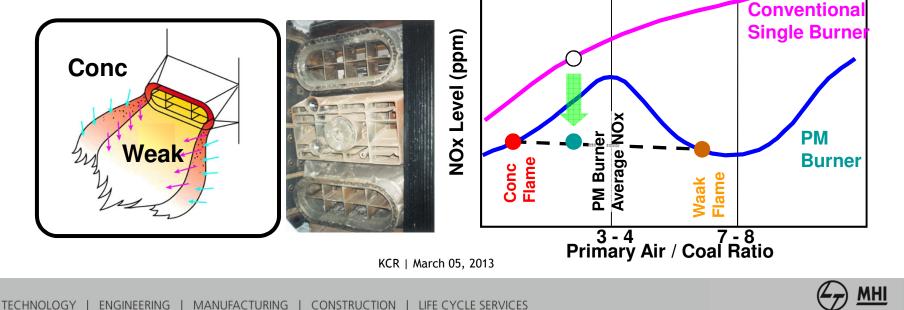

History of Mitsubishi Low NOx Combustion Technology

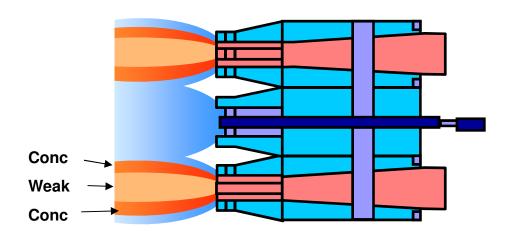
• Continuous Improvement following Japanese Regulation.



LMB Coal Combustion Technology

CCF: <u>C</u>ircular <u>C</u>orner <u>F</u>iring


- Features of CCF
 - High Ignitability and Combustibility
 - High Occupation rate of Fire Vortex in Furnace
 - Uniform Heat Flux Distribution
- Means...
 - Low NOx & Unburnt Carbon
 - High Efficiency
 - Good Operability
 - Low Slagging Tendency


Low NOx PM Burner : Pollutant Minimum

- Coal flame composed by
 Conc : Fuel Rich ⇒ Good Ignition
 Weak : Fuel Lean⇒ Moderate Combustion
- Divided flame achieves simultaneously;
 - Stable Ignition and Combustion
 - Low NOx Combustion

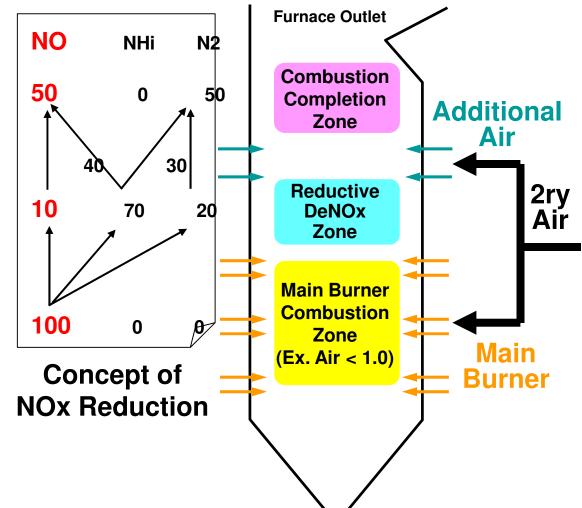
L&T MHI Boilers

LMB Firing system Low NOx Burners (PM burners)

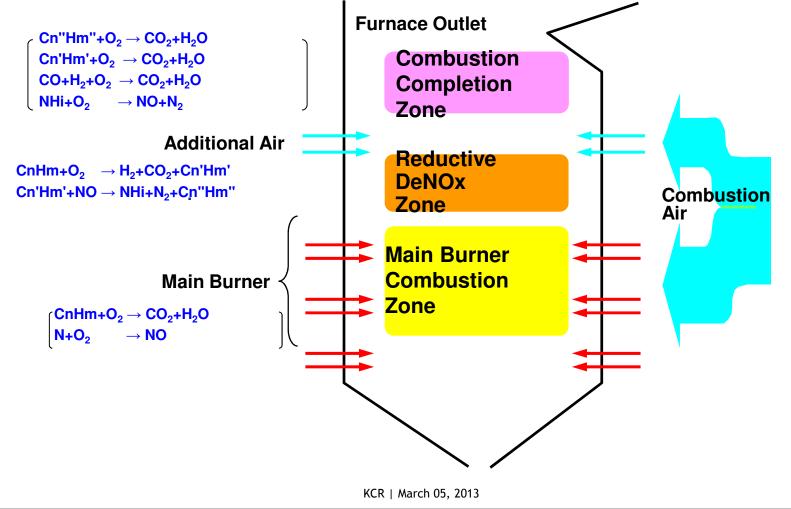
- High ignitiability even under low-O2 condition
- Application for all solid fuel (incl. low combustive fuel)

PM : <u>Pollution Minimum</u>

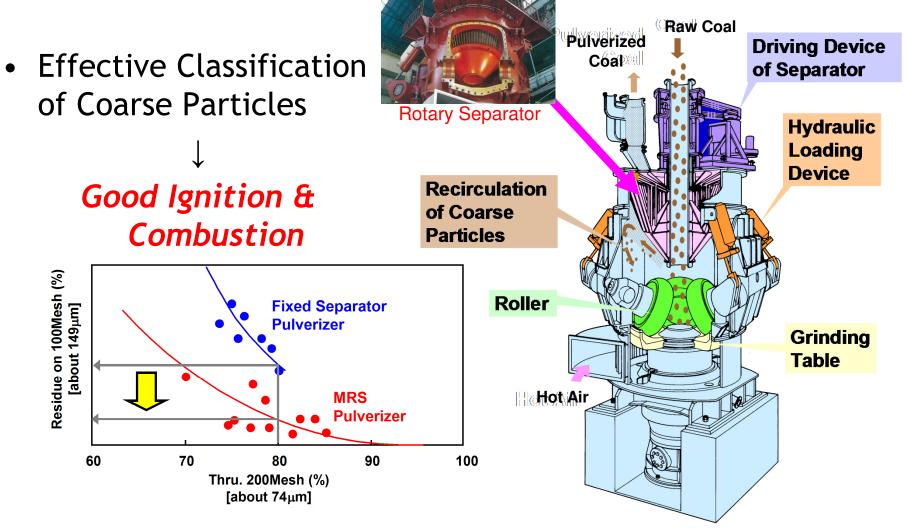
PM burner with vertical waterwall


KCR | March 05, 2013

MACT : <u>Mitsubishi Advanced Combustion Technology</u> (In-furnace NOx Removal System)


[Advantages of MACT]

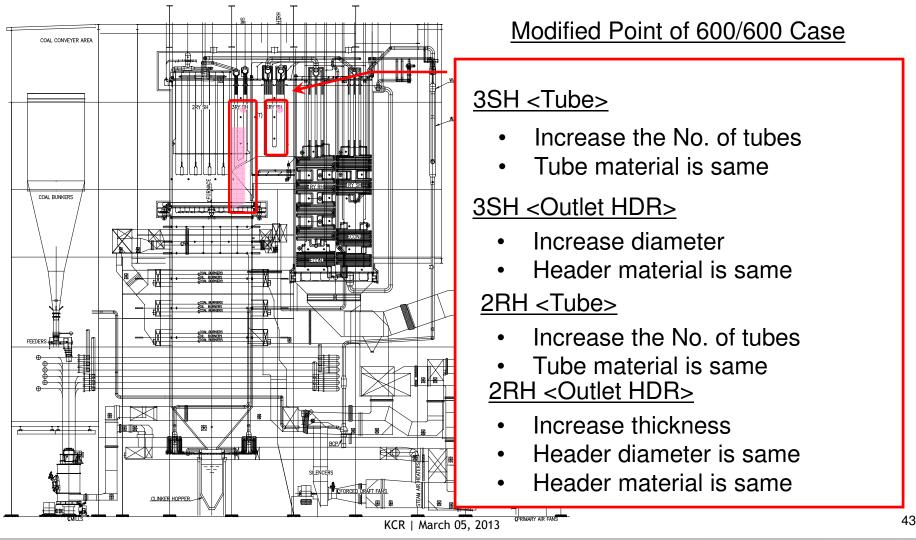
- No additional cost of Ammonia Injection or Catalyst.
- No emission of Substance Matter
- No change of Boiler Efficiency and Flue Gas Flow
- Stable and Reliable Combustion in Furnace
- Applicable to all fossil fuels, Gas, Oil, Coal, etc.


LMB Firing system MACT system -in-furnace DeNOx-

TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES

MRS Mill : <u>Mitsubishi Rotary Separator</u> (High Performance Vertical Mill)

TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES


- 1. What is USC Boiler
- 2. Trends of USC units
- 3. Supply records of USC
- 4. Feature of USC Boiler
- 5. Impact on present SC design

42

Boiler Design for USC 600/600

➤ To meet with the elevated steam condition from present 566/593 to 600/600, following design change is required. It can be modified based on our existing design.

What next to Ultra Super Critical

KCR | March 05, 2013

L&T MHI Boilers

TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES

44

What Next to Super Critical

Efficiency improvement

ADVANCED ULTRA SUPERCRITICAL TECHNOLOGY

- With pressures up to 30 MPa & Temperatures 700 / 700 Deg.C
- Cycle efficiency up to 50% on LHV basis

INTEGRATED GASIFICATION COMBINED CYCLE (IGCC)

• Using super high temperature GTs (1700 deg. c class)

KCR | March 05, 2013

• Cycle efficiency up to 55% on LHV basis

What Next to Super Critical

Emission improvement

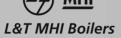
ADVANCED ULTRA SUPERCRITICAL TECHNOLOGY

- Cumulative CO2 emissions reduction by 20-25 %
- By using OXY fuel combustion CO2 emissions reduction by 90%
- Reduction of Sox, Nox & SPM levels proportional to Eff. Improvement

INTEGRATED GASIFICATION COMBINED CYCLE (IGCC)

- Cumulative CO2 emissions reduction by 25-30%
- By using Pre combustion recovery method CO2 emissions reduction by 90%
- Reduction of Sox, Nox & SPM levels to 4-5 PPM

KCR | March 05, 2013



What Next to Super Critical

CO2 Reduction Roadmap for Coal-fired Power Generation

Demonstrated technologies at near-commercialization						Achieved or almost-achieved technologies		
Classi– fication	Item	19	990 20	000 20)1	0 2020 2030 2040		
Efficiency improvement	USC (600° C-class) Material developmen	Verif for a	cation test 700– boiler	 1000 MVV (600–610° ())			
	IGCC		Pilot 200 t/d	Nak <mark>oso demo</mark> 250 <mark>MVV</mark>	nst	Stration Commercial 500–650 MVV		
		300	MVV-class demonstra	ton (US/EU)		Commercial 600 MW-class (US/EU)		
	A-USC (700° C-class)		Materi: develo	Material developme a Verification test f pment boiler (Germany)				
CO2 recovery	IGCC fuel gas (Pre-combustion)	Comr	nercial for chemical p	lants (2700)		Demonstration (Nakoso, Japan) Demonstration		
	Coal fired -boiler flue gas (Post-combustion)			Pilot (10)	 Yer	(Australia, etc.) Commercial 700 MVV (10,000) erification test ra boiler Commercial (3,000–5,000)		
	Oxy-fuel (Oxy-combustion)			P	iot	Dt <mark>(Australia) 30 MVV (</mark> 75) Demonstration (Canada) 180 MW Commercial (Germany) 300 MW (6,000)		
Basic R&D Demonstration Commercial Solid lines show technology trends outside of Japan								
Recovered and stored CO ₂ volumes (t-CO2/d) are in parentheses. FEED:Front End Engineering Design								
Source : From MHI Technical review KCR March 05, 2013								
					CE			

TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES

47

Advantages of A-Ultra Super Critical Technology

Increase in plant Efficiency:

Туре	Parameter	Efficiency LHV BASIS
Sub Critical	16.6MPa /538 / 538°C	38-40%
Super Critical	24 MPa / 566 /593°C	40-42%
Ultra Super Critical	25~30 MPa /600 /620°C	43-46%
A-Ultra Super critical	25~30 MPa /700 /700°C	46-50%

Lesser emissions:

These increases in plant efficiency can reduce CO2 emissions by a ratio of 2 to 1 (i.e. a one percentage point increase in efficiency reduces emissions by around two percent). Improved efficiencies also reduce the level of other pollutants and overall fuel use.

KCR | March 05, 2013

TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES