

From the 600/620°C to the 700/720°C-USC-PP

History and Status

Dr M. Bader

The Motivation

Global Basic Conditions for the Energy Industry

Economics Competition in the European Market

Security of Supply

Resources, mix of power production and political framework

Environmental Impact Climate protection and new technologies

The Road Of The Development

700/720°C Boiler (Demo- 500MW)

[Hitachi Power Europe GmbH Duisburg]

R&D from 2007 - 2012

700°C Boiler - Material Concept

[NRWPP700, Variant A]

700°C Boiler - Material Concept

[NRWPP700, Variant B]

Damage → SRC...?

Crack initiation

In the welding area:

- 1. Shrinking stresses (σ_{res})
- 2. In the HAZ (heat affected zone)
- 3. At the outer surface
 - (stresses caused by bending)

Crack propagation

Mainly in the base material:

- 1. Steered by the stress
 - (no different between HAZ and Parent Mat)
- 2. Intergranular crack (IC)

Relaxation Cracking At A617-Welds

R&D Road Regarding The SRC-Behaviour

Welding: Influence of PWHT on Alloy617

- Welding = Casting = Shrinkage Stresses
- Heavy-walled \rightarrow a Stress Relief Annealing is necessary
- Normal Hardening of Nickel Base Alloy at 700°C (no plastic relaxation over dislocation gliding) and stress induced gamma prime formation in HAZ

Welding: Influence of PWHT on Alloy617 – Influence of Working Temp.

[Kirchhöfer, H. et al: Precipitation Behaviour of Hastealloy X and A617 (1984)]

Status Of The Welding Technology For A617

Virgin material:

- As-delivered condition: solution annealed
- After welding: stress relief heat treatment (SRHT) 980°C/3h

For repair:

Before welding:

Variant I: 980°C/3h (removal of γ '-phase) – necessary Variant II: 1160°C/1h (additional -removal of carbide-precipitations at grain boundaries \cong reset the material structure in the initial status) – better weldability (however a challenging heat treatment)

• After welding: stress relief heat treatment (SRHT) 980°C/3h

<u>Remark:</u> ongoing, tests of the repair methods in test rig "Enzio" and additional investigation programs

Résumé

- The classic process is technologically limited.
- The main increase in efficiency is only possible with higher steam

temperature and afterwards with the steam pressure.

- 80% of R+D for the 700°C-PP is done.
- No all solutions for the special technical questions are sophisticated.

History \rightarrow New technical levels brought also unexpected issues and failure.

