
# Dynamic Flow analysis and corrections to improve performance

# steag



#### 160 mg/m<sup>3</sup> => 50 mg/m<sup>3</sup>





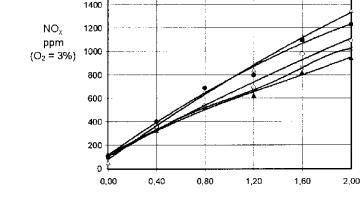
# Nitrogen Oxides Control NOx

[mg NO<sub>2</sub>/m<sup>3</sup>] for 6% O<sub>2</sub> in dry flue gas at normal conditions

ppm  $\rightarrow$  mg/m<sup>3</sup>

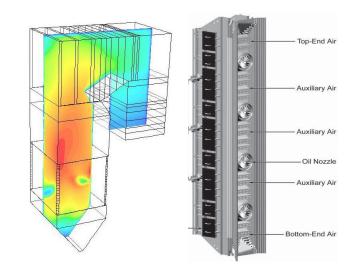
NO [mg/m<sup>3</sup>] = 1.3387 NO [ppm] NO<sub>x</sub> [mg/m<sup>3</sup>] = 2.0525 NO<sub>x</sub> [ppm]

## NOX and its control in coal combustion


NOX in flue gas : 90-95% **NO** and balance as NO2 NOX : oxidation Nitrogen in Air-(**Thermal Nox**) or 25% Nitrogen in fuel(**fuel Nox**) 75% **Thermal NOx :**minimised by **reducing combustion zone** 

temperatures.

- Fuel NOx formation depends on Fuel/Air ratioLow Nox burners introduce reduced oxygen levels for combustion.
- Nox emission control:
- **Two methods**: (1)COMBUSTION CONTROL (2) POST COMBUSTION CONTROL


**Combustion control** : Low Nox burners, air staging, fuel staging

- **Post combustion control :** Selective catalytic reduction**(SCR)**, Selective Non catalytic Reduction**(SNCR)**-Hot zone, adequate mixing time
- **Catalysts** :Vanadium-Titanium mixture.(30% of capex)
- Alkali elements in ash, poison the catalyst



1600

| <u>N<sub>F</sub> in different coals</u> : |                      |
|-------------------------------------------|----------------------|
| Bituminous coal:                          | 0.6 - 2.8% N (85% C) |
| Anthracite                                | <1% N                |
| Lignite:                                  | 0.6 - 2% N.          |







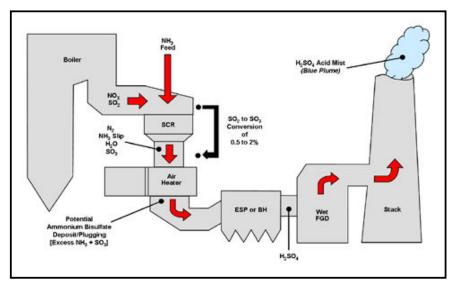
**Post combustion** 

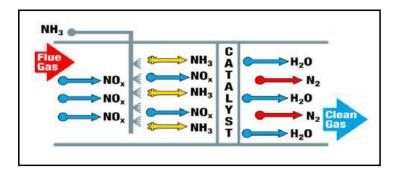


### Selective catalytic(or non catalytic) Reduction(SCR or SNCR)

In both SCR and SNCR, Nox is reduced into N2 & H2O, with a reagent injected into the flue gas.

For SNCR, the reagents are Ammonia and Urea


SNCR high temperature zone injections(900 C)-NOX removal rates are 15-35%.


For high NOX removal, SCR is used(catalytic reactor)

For SCR, the reagents are anhydrous and aqueous ammonia and urea.

Flue gas is mixed with ammonia and then the mixture is led to a catalytic convertor(350-450 C). NOX removal rates are 50-70%

 $4 \text{ NO} + 4 \text{ NH}_3 + O_2 \xrightarrow{\text{Catalyst}}$ Temperature





### Concerns to be addressed in SCR and SNCR

- steag
- Ammonia Storage & handling: Associated safety issues Ammonia(BP -28C)
- Increased System pressure drops with increase in catalyst pitching[10-20mmwcl]
- Catalyst management: provision for future layers in the furnaces/ducts. Cost for replacement
- Hazardous waste management
- Furnace and ducts modifications: For SNCR, temperature is a criteria for effectiveness.
- Air heater choking, ammonia fouling
- Effect on ash disposal: Ammonia concentration in fly ash can affect ash disposal

The Need:

 online/continuous monitoring monitoring and control system for safe and efficient operation of the unit.



## **Steag capabilities**

Dr. Benesch 27.01.16

## Steag & SCR

STEAG's own SCR fleet consists of: 30 SCRs in operation servicing 31 units totaling 10,555 MW since 1980s.

STEAG's SCR design engineering, project management, construction supervision and longterm SCR management experience comprises of:

| • bituminous coal-fired:                  | 41,075 MW |
|-------------------------------------------|-----------|
| <ul> <li>PRB coal-fired:</li> </ul>       | 16,305 MW |
| <ul> <li>oil/gas-fired:</li> </ul>        | 4,420 MW  |
| • <u>CCGT/SCGT:</u>                       | 2,080 MW  |
| <ul> <li>total SCR experience:</li> </ul> | 61,800 MW |

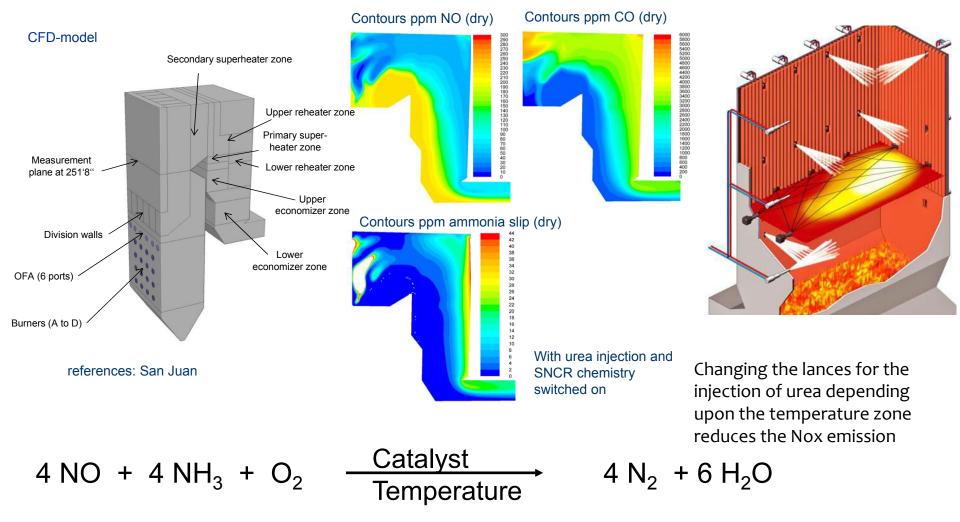
# • Steag offers online monitoring ,control and optimization systems

STEAG provides the following **SCR engineering services:** 

- Process design engineering
- CFD modeling and flow optimization
- Basic equipment design engineering
- Design review
- Catalyst loading and unloading logistics
- Startup and commissioning assistance
- Lifecycle studies

# STEAG provides the following **SCR equipment** supplies:

- Turn key ammonia systems (NH<sub>3</sub>, NH<sub>4</sub>OH, UREA)
- Large Particle Ash screens
- Used, regenerated catalyst including seal systems and lifting devices


#### STEAG provided SCR technology licenses to:

- Black & Veatch (expired 2006)
- Clyde Bergemann (ongoing)

## **Advanced Control for NOX**

# steag

The constantly varying composition of the fuel changes the combustion behavior of the fuel, causing considerable variations in the heat release and as a consequence the furnace temperature



# Experiences in Germany with SCR performance STEAG-Power Plant

# steag

| Power Plant          | Capacity<br>MW | Combustion               | DeNO <sub>x</sub><br>System | Catalyst                        | Operating<br>Hour co<br>Jan. 1999 | NO <sub>x</sub> -Inlet<br>ncentration<br>mg/m³ | No <sub>x</sub> -<br>separation<br>% |
|----------------------|----------------|--------------------------|-----------------------------|---------------------------------|-----------------------------------|------------------------------------------------|--------------------------------------|
| Bergkamen            | 747            | Dry-bottom               | HD                          | honeycomb                       | 67,000                            | 760                                            | 74                                   |
| Voerde A<br>Voerde B | 710<br>710     | Dry-bottom<br>Dry-bottom | HD<br>HD                    | honeycomb<br>honeycomb<br>plate | 56.000<br>58.000                  | 600<br>600                                     | 78<br>66                             |
| Herne 1/2            | 2 x 150        | Slag-tap                 | TE                          | honeycomb                       | 60.000                            | 1100                                           | 88                                   |
| Herne 3              | 1 x 300        | Slag-tap                 | TE                          | honeycomb                       | 62.000                            | 1400                                           | 90                                   |
| Herne 4              | 500            | Dry-bottom               | HD                          | plate                           | 48.000                            | 450                                            | 53                                   |
| Luenen 10            | 150            | Dry-bottom               | TE                          | honeycomb                       | 46.000                            | 1100                                           | 88                                   |
| Luenen 11            | 350            | Slag-tap                 | TE                          | honeycomb                       | 66.000                            | 1300                                           | 89                                   |
| Walsum 9             | 410            | Dry-bottom               | HD                          | plate                           | 76.000                            | 500                                            | 67                                   |
| Walsum 7             | 150            | Slag-tap                 | LD                          | honeycomb                       | 40.000                            | 1100                                           | 88                                   |
| West 1               | 350            | Slag-tap                 | TE                          | honeycomb                       | 58.000                            | 1300                                           | 89                                   |
| West 2               | 350            | Slag-tap                 | TE                          | honeycomb                       | 58.000                            | 1300                                           | 89                                   |
| Leuna                | 160            | Heavy oil                | HD                          | plate                           | 13.000                            | 880                                            | 81                                   |

HD=High Dust, LD= Low Dust, TE= Tail End

583,000



## Sulfur di-oxide(SOx) emission control

TECHNOLOGIES: WET AND DRY SCRUBBERS

## Flue Gas desulfurisation -FGD Sox Control



#### Concept

Lime stone(CaCo<sub>3</sub>) reacts with SO<sub>2</sub> in presence of oxygen to form Gypsum(commercial) Dolomite(limestone) has magnesium and requires more Ca/S ratio. SO<sub>2</sub> capture is influenced by Temperature(850C)

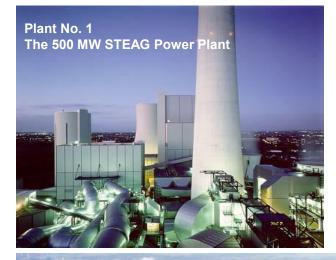
**Combustion :** Furnace sorbent injection(lime stone)

### **Post Combustion:**

wet scrubbing : Flue gas is passed through alkaline solution where sulfur is captured and the product is further oxidised to Gypsum.

### Most efficient

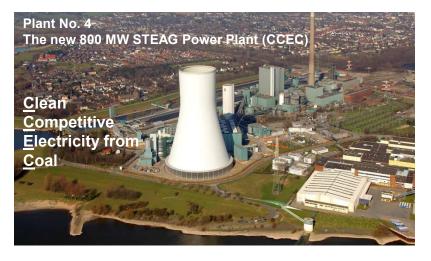
Dry systems, the efficiencies are low. Lime consumption is more.


Quality of lime stone affects performance

For effective control: Ensure Scrubber availability(>95%)

Loading of particulates increases, requires frequent soot blowing , tube damages Sea water is alkaline and can be used to absorb Sox(Indian power stations use)

#### **STEAG Power Plants with FGD**






Plant No. 3 The 760 MW STEAG Power Plant / FGD Retrofit







### **STEAG's Development of FGD-Technology**



| <ul> <li>1971 140,000 m³/h (stp) Pilot plant at STEAG power station Lünen (Bischoff-Process)</li> <li>1974 150,000 m³/h (stp) Pilot plant at STEAG power station Lünen (ACT - Process)</li> <li>1981 750 MW First commercial FGD plant at STEAG power station Bergkamen Pilot plant at STEAG power plant Herne (Ammonia water process)</li> <li>Today ~ 9,000 MW Total capacity of operational FGD - system</li> <li>&gt; 2.0 million Total FGD operating experience</li> <li>~ 10,000 MW Total capacity of designed STEAG FGD - system</li> <li>&gt; 25 years FGD operating experience</li> <li>~ 10,000 MW Total capacity of designed STEAG FGD - system</li> </ul> |   | 1 <b>9</b> 68 | 5,000 m³/h (stp)   | Pilot plant at STEAG power station Lünen                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------|--------------------|----------------------------------------------------------------------|
| 1981<br>1999750 MW<br>10,000 m³/h (stp)First commercial FGD plant at STEAG power station Bergkamen<br>Pilot plant at STEAG power plant Herne (Ammonia water process)TodayFGD Operating experience<br>~ 9,000 MWTotal capacity of operational FGD - system> 2.0 millionTotal FGD operating hours<br>> 25 yearsFGD operating experience<br>~ 10,000 MW> 10,000 MWTotal capacity of designed STEAG FGD - system                                                                                                                                                                                                                                                          |   | 1971          | 140,000 m³/h (stp) | Pilot plant at STEAG power station Lünen (Bischoff-Process)          |
| 199910,000 m³/h (stp)Pilot plant at STEAG power plant Herne (Ammonia water process)FGD Operating experienceToday~ 9,000 MWTotal capacity of operational FGD - system> 2.0 millionTotal FGD operating hours> 25 yearsFGD operating experience~ 10,000 MWTotal capacity of designed STEAG FGD - system                                                                                                                                                                                                                                                                                                                                                                  | l | 1974          | 150,000 m³/h (stp) | Pilot plant at STEAG power station Lünen (ACT - Process)             |
| FGD Operating experience         Today       ~ 9,000 MW       Total capacity of operational FGD - system         > 2.0 million       Total FGD operating hours         > 25 years       FGD operating experience         ~ 10,000 MW       Total capacity of designed STEAG FGD - system                                                                                                                                                                                                                                                                                                                                                                              |   | 1981          | 750 MW             | First commercial FGD plant at STEAG power station Bergkamen          |
| Today~ 9,000 MWTotal capacity of operational FGD - system> 2.0 millionTotal FGD operating hours> 25 yearsFGD operating experience~ 10,000 MWTotal capacity of designed STEAG FGD - system                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 1999          | 10,000 m³/h (stp)  | Pilot plant at STEAG power plant Herne (Ammonia water process)       |
| Today~ 9,000 MWTotal capacity of operational FGD - system> 2.0 millionTotal FGD operating hours> 25 yearsFGD operating experience~ 10,000 MWTotal capacity of designed STEAG FGD - system                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |               |                    |                                                                      |
| <ul> <li>&gt; 2.0 million Total FGD operating hours</li> <li>&gt; 25 years FGD operating experience</li> <li>~ 10,000 MW Total capacity of designed STEAG FGD - system</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |               |                    | FGD Operating experience                                             |
| <ul> <li>&gt; 25 years</li> <li>&gt; 70,000 MW</li> <li>&gt; 70 Total capacity of designed STEAG FGD - system</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • | Today         | ~ 9,000 MW         | Total capacity of operational FGD - system                           |
| ~ 10,000 MW Total capacity of designed STEAG FGD - system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |               | > 2.0 million      | Total FGD operating hours                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |               | > 25 years         | FGD operating experience                                             |
| > 12 000 MW. Total consoity of internat, anging arrive as Owner's anginger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |               | ~ 10,000 MW        | Total capacity of designed STEAG FGD - system                        |
| > 12,000 MW Total capacity of internat. engineering services as Owner's engineer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |               | > 12,000 MW        | Total capacity of internat. engineering services as Owner's engineer |
| > 20,000 MW Total capacity of FGD retrofits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |               | > 20,000 MW        | Total capacity of FGD retrofits                                      |

## Steag's capability



STEAG can provide unique engineering services transferring extensive long-term FGD operating experience to our customers:

- Basic design
- Specify optimal process, arrangement concept and equipment design
- Design review
- Material and equipment selection
- Material handling
- Maintenance assistance
- Measuring services
- Operator training / in FGD plants





**1.Combustion of Fuels:** 

- 2.Advance emission control technologies, Babcock and wilcox
- 2.Flue gas conditioning: S N Trivedi, R C Phadke- chemithon Engineers
- 4.Power plant engineering-Black and Veatch
- 5.Steag experiences: Dr Wolfgang Benesch





Through the Gates Foundation, Bill and his wife Melinda have already given away nearly \$30 billion of their fortune and there are tens of billions more in the pipeline.

Bill Gates is the single most influential voice in global health, so when he turns his attention to an issue, it is worth listening.