

Performance Analysis Diagnostics & Optimization (PADO)

First Step: low hanging fruits

Improve efficiency by improving operation and maintenance

Next Steps:

- Audit or "map" the plant using off line modelling tool e.g. Ebsilon
- □ Online optimization tool PADO
- Online fault detection system using SPC and Fault trees
- Online life time monitoring SR1 for better planning of inspections and maintenance

DCS also has the information needed to do the calculation of efficiencies & heat rates

But what are the limitations ?

- DCS does not give the system wise efficiencies so you do not know <u>where</u> the losses occur
- 2. Data from I/O points e.g. Temperature, pressure mass flow could be wrong because of sensor errors, bad connectors etc. That makes calculation <u>erroneous</u>.
- 3. DCS does not give advice on what to do

- 1. All relevant data from DCS which goes into calculation need to be validated i.e. all implausible values have to be replaced by plausible values
- 2. All calculations must be done every 5 minutes so as to continuously monitor component and heating surface efficiencies.
- Results should be presented in user friendly manner: state of comonents indicated by green, yellow, red and losses expressed in monetary value per hour

PADO Functions

80 units order for PADO have been placed on SESI 27 units successfully commissioned till date

National Thermal Power Corporation (NTPC)

The largest power generating major of India generating power from Coal and Gas with an installed capacity of 34,194 MW, has standardised on Steag PADO for all future units including Super-Critical Units.

Bharat Heavy Electricals Limited (BHEL)

The largest supplier of power equipment with 70% of current installed market of Thermal Power Plants has a Framework Agreement with SESI for installation of PADO for all future units including Super-Critical Units.

PADO in India (2)

steag

55 units where PADO is commissioned or under commissioning

- □ NTPC Simhadri 2x500 MW
- □ NTPC Ramagundam 1x500 MW
- □ NTPC Rihand 2x500 MW
- □ NTPC Talcher 4x500 MW
- □ NTPC Kahalgaon 3x500 MW
- □ NTPC Sipat 2x500 MW
- □ NTPC Vindhyachal 2x500 MW
- □ NTPC Korba 1x500 MW
- □ NTPC Dadri 2x500 MW
- NTPC Farakka 1x500 MW
- □ Mahagenco Khaparkheda 1x500 MW
- □ Mahagenco Bhusawal 2x500 MW
- NTPC Simhadri (stage II) 2x500 MW
- □ NTPC Jhajjar 3x500 MW
- □ KPCL Bellary (KPCL) 1x500 MW

- RVUNL Stage 1 and 2 Chhabra 3 x 250 MW
- □ Shree cement Ltd. RAS
- DVC Maithan 2x500 MW
- GEB Ukai 2x500 MW
- □ NTPC Korba Extn 1x500 MW
- □ NTPC Bongaigaon 3x250 MW
- □ TNEB North Chennai 2x600 MW
- □ CSEB Marwa 2x500 MW
- □ CSEB Korba 1x500 MW
- L&T Rajpura 2x700 MW
- L&T Koradi 3X660 MW
- □ Sterlite Jharsuguda 4X600 MW

Signing of Framework Agreement

steag

- Improving the quality of measurements by data validation
- Evaluation of boiler, turbines, condenser and other components
- Optimization of unit operation (sootblowing, setpoints)
- Calculation of what-if scenarios
- Generation of daily and monthly reports
- Enhance the efficiency of the power plant !

Modules of PADO System

steag

SR::x Data Management System

SR::x is the central data management in the SR product family

Competitive server featuring a "state-of-the-art" visualization

- Long-term storage of measured and computed values in time-oriented archives;
 base time class is 'minute values'
- Automatic aggregation to higher time classes such

as 5'-, quarterly-, hourly-, daily-, monthly- or yearlyvalues

- Integrated mathematical formula editor
- Excel-Add-In and HTML-List Generator allow the generation of extensive reporting systems

SR::x Data Management System

SR::x is the central data management with "state-of-the-art" visualization

Data Validation System

Data Validation to replace data errors due to defective sensor or cable problems: Incorrect Data – Wrong results

Validation – A 3 tier Process

- 1) Plausibility Check using Neural Networks
- 2) Plausibility Check based on range
 - of Values
 - 3) Data validation / reconciliation based on "First Principle
 - Thermodynamic" model

based on Neural Network...

based on "First Principle Thermodynamics"...

check the quality of measurements ...

Implausible Value - detection

	SHPL_M_T_INP_G					
_	Dependencies Formula					
	 SHPL_M_T_INP_G - avg. value - SH PLTN I/L HDR TEM (L) - checked value [479 °C] SHPL_M_T_INPL_G - SH PLTN I/L HDR TEM (L) - checked value [479 °C] SHPL_M_T_INPR_G - SH PLTN I/L HDR TEM (R) - checked value [479 °C] 					
	main steam measurements left and right					
	(left not plausible)					
		J				
	OK Canc	el				

Implausible Value - replacement

Neural network generated the value 477 °C for not available value of tag 70HAH30CT129_XQ03

Data Validation Report

point in time: 05.05.04 11:25:00

plausible value data reconcilation successfull implausible value data reconcilation not successfull

datapoint	description	raw value	plausibility checked value	reconciliation data point	value from reconcilia
20HAC10CP101	plausib. value FW PRESS AT ECO I/L	196.3 kg/cm²	196.3 kg/cm²	20HAC10CP101_V	196.3 kg/cm²
20HAC10CT101	plausib. value FW TEMP AT ECO I/L	257.1 °C	257.1 °C	20HAC10CT101_V	257.1 °C
20HAD01CP101	plausib. value DRUM PRESS	190.4 kg/cm²	190.4 kg/cm²	20HAD01CP101_V	190.4 kg/cm²
20HAD01CP102	plausib. value DRUM PRESS	190.0 kg/cm²	190.0 kg/cm²	20HAD01CP102_V	190.0 kg/cm²
20HAD01CP103	plausib. value DRUM PRESS	189.7 kg/cm²	189.7 kg/cm²	20HAD01CP103_V	189.8 kg/cm²
20HAH21CT101	plausib. value SH DESH I/L TEMP (L)	400.0 °C	400.0 °C	20HAH21CT101_V	400.2 °C
20HAH22CT101	plausib. value SH DESH I/L TEMP (R)	401.1 °C	401.1 °C	20HAH22CT101_V	401.1 °C
20HAH23CP101	plausib. value SH DESH O/L PRESS (L)	184.1 kg/cm²	184.1 kg/cm²	20HAH23CP101_V	183.9 kg/cm²

Visualization Aid 1 : Traffic light coding system

Red - Critical Yellow - Suboptimal Light Green – Optimal Dark Green – Time gap to next action

Visualization Aid 2 : Data values as tags & in tables with coded Background colors

Interpretation of Background Colors

- White Measured Value
- Grey Calculated Value
- Violet Replaced value (Originally non plausible or not available)

Performance Monitoring

Compares the actual values of critical parameters with the best achievable under current operating conditions.

Shows monetary loss against each sub optimal operating parameter, defining the scope of improvement.

						_		
Ramagundam 7 5/23/2008 2:30:00 PM-2:35:00 PM								
Status	L	Jnit Boile		oiler		Measure	ements	
otatao	steady	y state 👘		oper	ating		look pla	ausibility
Generator e	el. outpu	t power g	gros:	s			5	02 MW
Unit efficier	ncy net					_		35.3 %
Unit heat ra	ate gross					2	363 KCa 1	al/kWh
Boller Load	Index					_	1:	07 n %
Station load	ency 4					_	15	07.0 %
Stationhoad			IG I	OPT		TI		.01111
		Effici	enci	 			Sooth	owina
Heating	, ∣	LIIICI		63	Level/	ί.	0.0000	ig
Surface	e	Act		Min	SB No	.		
Furnace/W	w .	91.7		80.1	Row 1-	5	SB no	ot req.
SH Divisior	n Pan.	88.9		85.0	105-11	oĘ	Comp	o. SB
SH Platen		93.2		85.0	111-11	۶Į	SB no	ot req.
Reheater		79.0		79.0	119-12	4	Nex	t SB
Low Temp.	SH	106.2		85.0	63.15 r	n	Suspe	ended
					57.35 r	n		
Economize	r	97.0		85.0	54.06 r	ո[Suspe	ended
					49.45 r	٦ľ	SB no	ot req.
	AC	T-/REF	-00	MP.	ARISO	N		
		Act			Ref		Monet	ary loss
02 at Eco	outlet	3.99 %	:Vol	3.	16 %Vol		0.0	2 Rs/h
Burner till	t		11 °		-4 °	1		
SH spray		36.2	t/h		0.0 t/h			
RH spray		28.1	t/h		-0.0 t/h			
IFG at Eco	o outlet	338	STU O		07.0.0			
Boiler efficie	ency	87.	υ%		87.9%			

Turbine Performance Monitoring

TU

BINE]				. 8		
ess Sheets Documentation Window Help						
	X \$ 5'-values	5/23/2008 2:45	:00 PM-2:50:00 PM			
TURBINE CYCLE	rottle temperature 538 °C 169 kg/cm ²	Reference HR Dev [kcal/kW 537 °C -0.3 170 kg/cm²a 2.8	Losses expr. Mon. h] in extra fuel loss [f 35] -0.1 t/h 79] 0.5 t/h	etary Rs/h] -74 634		
528 °C Re Co 43.0 kg/cm² 44 kg/cm² Bebeat pressure drop Re	heat temperature 528 C heat pressure drop 4.4 kg/cm² ndenser back pressure -0.87 kg/cm² perheater spray flow 30.5 t/h	337 C 4.3 4.5 kg/cm²a 3.6 -0.87 kg/cm² -2.9 0.0 t/h 6.1	97 0.87/h 72 0.6 t/h 65 -0.5 t/h 90 1.0 t/h	809 -1 1364		
Bic Au	Losses	Actual	Reference	HR Dev. [kcal/kWh]	Losses expr. in extra fuel	Monetary loss (Rs/h)
Free Ma	Throttle temperature	538 °C	537 °C	-0.335	-0.1 t/h	-74
	Throttle pressure	169 kg/cm²	170 kg/cm²a	2.879	0.5 t/h	634
	Reheat temperature	<u>528 °C</u>	537 °C	4.997	0.8 t/h	1101
	Reheat pressure drop	4.4 kg/cm²	4.5 kg/cm²a	3.672	0.6 t/h	809
- ±	Condenser back pressu	re <u>-0.87 kg/cm²</u>	-0.87 kg/cm²	-2.965	-0.5 t/h	-1
	Superheater spray flow	<u>30.5 t/h</u>	<u> </u>	6.190	1.0 t/h	1364
	Reheat spray flow	32.5 t/h	0.0 t/h	20.944	<u>3.5 t/h</u>	4614
	Final FW temperature			U.346	<u> </u>	/6
	Blow down flow	0.0 t/h	48.4 t/h		0.0 t/h	
	Auxiliary steam riow		<u> </u>	8.449	1.4 (/h)	1861
	Make-up flow	43.30 HZ 22.2 t/h	0.0 t/h	43.613	7.4 t/h	9608
	ual <u>2054 koa</u> rence 2051 koa	al/kWh TG I al/kWh	heat rate net,	actual 2117	kcal/kWh	

Boiler Performance Monitoring

Boiler thermal performance data				
Fluid temper Inlet	ature (*C) Outlet	Fouling factor		
259	331	0.80		
359	359	0.8		
359	415	0.8		
401	478	0.90		
478	542	0.79		
322	545	0.90		
		0.64		
Coal analysis GCV [kcal/kg]		348		
Proximate				
Total moisture	[%]	12.1		
Ash [%]		38.1		
Volatile matter	[%]	23.0		
Fixed carbon [26.8			
Ultimate				
Carbon [%]		36.3		
Hydrogen [%]		2.0		
Nitrogen [%]		0.8		
Oxygen [%]		9.8		
Sulphur [%]		0.4		
Total moisture	[%]	12.1		
Ash [%]		38.1		

Load [MW]	513
MS flow [t/h]	1596
MS temp [*C]	542
RH temp [*C]	545

	Flue gas temperature ['L]			
Section	Inlet	Outlet		
Economiser	578	362		
Waterwalls	1794	1334		
LTSH	826	578		
Panel SH	1334	1173		
Platen SH	1173	1076		
Reheater	1076	826		
Air heater	362	155		

Coal mass flow [t/h]	325
Bottom ash removal rate [%]	20
Duct ash removal rate [%]	5
AH ash removal rate [%]	3
Fly ash removal rate [%]	72
UBC in ash [%]	0.4

Ambient air temperature [*C]		- 28
Relative humidity [%]		60
Flue gas oxygen at Eco outlet		3.68
Flue gas oxygen at AH outlet		6.23
Burner tilt [*]		11
Mills in operation	Α	on
	B	on
	C	off
Maximum metal	D	off
temperature [*C]		on
	F	on
	G	on
436 °C	H	off
527 °C	J	on
589 °C	K	on
612 °C		-

Heat balance	Act	Ref
Boiler efficiency [%]	86.89	87.99
Losses		
Dry gas [%]	5.64	4.28
H2O in fuel [%]	2.18	2.21
H2O from H2 in fuel [%]	4.21	4.21
H2O in air [%]	0.08	0.11
UBC [%]	0.32	0.32
Radiation [%]	0.11	0.12
Others [%]	0.68	0.76
Total losses [%]	13.21	12.01
Corrected Boiler Efficiency (%)	87.03	

Boiler Mapping

Soot Blowing Optimization

□ Fouling and Slagging of boiler heating surfaces cause...

- Loss of efficiency due to increased flue gas temperature.
- Loss of efficiency due to increased Reheater spray flow.
- Shutdowns for removing persistent slag.
 - Use of soot blowers...
 - Causes costs (blowing medium, wear-and-tear...).
 - Impact on control actions.
 - Erosion of the heating surfaces.
 - May be prohibited or not reasonable in some operating states.

Soot Blowing Optimization

SR::EPOS::BCM is the SR product for optimizing the soot blowing

- Controlled by costs or other criteria the optimum points in time for activating the individual blower levels are calculated
- Closed-Loop application possible if desired
- Application of fuzzy technology

Only 1 soot blower group may be o

Criteria for Soot Blow Optimization

- Fouling/Slagging: Results from thermodynamic model SR::EPOS
- Time intervals
 - Minimum frequency of soot blowing
 - Minimum-pauses
- Configurable priorities for each criterion
- Soot-blowing costs
- Process-engineering criteria, plant-specific
 - Reheat spray flow
 - Flue gas temperature before air preheater -
 - Furnace exit gas temperature
 - **RH** Metal Temperature -
 - Mills Combination
 - Coal mass flow
 - NOx-emissions

Soot Blowing Optimization

Boiler Setpoint Optimization

Ramagundam 7

30.86

Shows the optimal against current setpoints and improvement in heat rate.

Set point optimization					
Boiler	Act value	Opt value			
O2 at Eco outlet	3.62 %Vol	3.22 %Vol			
Burner tilt	4.3 *	0.5*			
Turbine Cycle					
MS temperature	533.84 °C	537.42 °C			
MS pressure	168.85 bar	170.00 bar			
Reheat temperature	530.97 °C	533.32 °C			
Unit Heat Rate gross	2368 kcal/kWh	2365 kcal/kWh			

Mill optimization 6/16/2010 11:10:00 AM-11:15:00 AM Current Status Opt Status Current Load Opt Load MILL K 55.39 t/h 22.00 t/h 50.38 t/h 22.00 t/h MILL J MILL H 0 0.13 t/h 0.00 t/h 0 MILL G 0 0.00 t/h 0.00 t/h Π MILL F 43.67 t/h 0.00 t/h 0.04 t/h 0.00 t/h MILL E 0 0 MILL D 42.71 t/h 38.09 t/h MILL C 38.23 t/h 38.38 t/h MILL B 47.63 t/h 42.08 t/h 42.68 t/h 55.01 t/h MILL A

Unit Critical Calculated Outputs

Superheater Spray	13.5 t/h
Reheater Spray	56.5 t/h
Furnace Exit Flue Gas Temp	1296 °C
PAPH-A Leackage	11.713 %wt
SAPH-A Leackage	12.743 %wt
PAPH-B Leackage	17.147 %wt
SAPH-B Leackage	16.596 %wt
Platten SH Max Metal Temp	585 °C
RH Max Metal Temp	600 °C
HPH-5A Drain O/L Flow	130 t/h
HPH-5B Drain O/L Flow	132 t/h

Transient State Status	
Model solved	
Plant in steady state	

Top3 Mills Status	
Model solved - Constraints on top 3 mills relaxed	

Total consumption of pumps	9947.7 kW
Total consumption of mills	2264.9 kW
Total consumption of fans	7031.7 kW
Total consumption of aux. consumers	19244.3 kW
Unit load	516.9 MW

FH1 OPT

Optimized Heat Rate

steag

In this case the optimum means to move

- the burner tilt down from the current 9 degree to 4.5 degree and
- the excess O2 from the current 4% to 3.55%.

Shows the temperature profile of individual tubes of various heating surfaces of boiler and identifies the Hot spots.

Lifetime monitoring module

stead

module aims to calculate the remaining life of thick walled components in boiler

BHEL Ramagundam 70 steag SR1 **Allowable Operating Parameters** ketek IT Pressure Component allowable current 1. Drum 1, upper side 70HAD01 200.0 | 185.6 2. Drum 1, lower side 70HAD01 200.0 | 185.6 370 360 52.0 🔶 43.5 540 3. HRH1, outled header, tee, upper side 70LBB01 540 4. HRH1, outled header, tee, lower side 70LBB01 52.0 🔵 43.5 52.0 🔶 43.5 540 5. HRH1, outled header, middle, lower side 70LBB01 52.0 🔶 43.5 540 6. HRH1, outled header, left, upper side 70LBB01 7. HRH1, outled header, left, lower side 70LBB01 52.0 🔶 43.5 540

8. MSH1, outled header, tee, upper side 70LBA01 9. MSH1, outled header, tee, lower side 70LBA01 10. MSH1, outled header, left, upper side 70LBA01 11. MSH1, outled header, left, upper side 70LBA01

10 VD 1 70 DD01

4/20/2011 4:30:00 PM-5:30:00 PM

186.0	167.7
186.0	167.7
186.0	167.7
186.0	167.7
52.0	43.5

186.0 | 167.7

186.0

43.5	
167.7	

	re	mper	alure
allo	owab	le	curre
	370		360
_			

540 🔶 540

540 🔴 540

540 🔴 548

540 🔶 540

540

540

540

540

540

540

	L	
548	E	26
548	Г	26

11]●□	0		-48
26		-0		-34
26		-0		-34
26		-0		-33
26		-0		-33
26		-0		-33
			ᅳᅳᅳ	
25		2		-34
25 25		2]•[]•[-34
25 25 25		2 2 2		-34 -34 -34
25 25 25 25		2 2 2 2 2		-34 -34 -34 -34 -34
25 25 25 25		2 2 2 2		-34 -34 -34 -34

Difference of Temperature

upper allow. current lower allow

14 🔴 0 🔶 -45

4/20/2011 5:00:00 PM-5:00:30 PM

2 0 -27 25 🔶 2 🔶 -34

the consumed life of an equipment could be different from the actual age of the equipment

BHEL Ramagundam 70 **Overview Degradation**

Component	operating monitored	time [h] down time	creep	life time cons fatigue	sumption [%] total	increment (24h)
I. Drum 1, upper side 70HAD01	35604.3 h	7765.5 h	5.201 %	0.238 %	5.439 %	0.000156 %
2. Drum 1, lower side 70HAD01	35604.3 h	7765.5 h	5.926 %	0.278 %	6.204 %	0.000178 %
3. HRH1, outled header, tee, upper side 70LBB01	35604.3 h	8653.6 h	1.868 %	0.000 %	1.868 %	0.000069 %
4. HRH1, outled header, tee, lower side 70LBB01	35604.3 h	8653.6 h	2.016 %	0.000 %	2.017 %	0.000075 %
5. HRH1, outled header, middle, lower side 70LBB01	35604.3 h	8653.6 h	6.354 %	0.000 %	6.354 %	0.000232 %
6. HRH1, outled header, left, upper side 70LBB01	35604.3 h	8653.6 h	3.822 %	0.000 %	3.822 %	0.000141 %
7. HRH1, outled header, left, lower side 70LBB01	35604.3 h	8653.6 h	6.354 %	0.000 %	6.354 %	0.000232 %
8. MSH1, outled header, tee, upper side 70LBA01	35604.3 h	7766.6 h	2.546 %	2.349 %	4.895 %	0.000102 %
8. MSH1, outled header, tee, lower side 70LBA01	35604.3 h	7766.6 h	7.974 %	2.349 %	10.322 %	0.000276 %
0. MSH1, outled header, left, upper side 70LBA01	35604.3 h	7766.6 h	27.202 %	0.937 %	28.138 %	0.000882 %
1. MSH1, outled header, left, upper side 70LBA01	35604.3 h	7766.6 h	27.202 %	0.937 %	28.138 %	0.000882 %
	05004.01	0474.01			0110*	0.000110.84
12. YP 1, 70LBB01	35604.3 h	84/1.3 h	3.086 %	0.032 %	3.118%	0.000119 %
3. YP 1, 70LBA01	35604.3 h	7766.6 h	2.634 %	4.881 %	7.515 %	0.000127 %
4 MSH 1 outlet beader tee lower side 70 BA01	35604.3 h	7766 G h	7 974 %	2349%	10 322 %	0.000276 %
A Morris, called header, (66, 10Wer alde FOEDMOT	00004.011	1100.011	1.314%	L.04076	10.022 %	0.00027076

steag SR1

ketek IT

Lifetime monitoring module

Lifetime monitoring module

depends upon how stressful the life of equipment has been so far in terms of temperature and pressure which effect fatigue and creep.

Statistical methods to evaluate partly automatic, early & reliable detection of changes where deterioration is slow.

Key Performance Indicators

measured	calculated
vibration	heatrate
bearing temperature	Component quality
oil temperature	factor
power consumption	efficiency

Key measurements in power plants usually depend on

- load,
- operation mode
- fuel quality
- ambient conditions
- etc.

And are superposed by noise

key performance indicators by Act / Ref-comparison (KPI)

KPIs measure the qualitiy of the process / component.

They do not depend on external disturbance variables

KPI = act-value / ref-value

SPC – Alarm Control Centre

steag

C EVONIK

Reference Mean AugPrd Mean UCLX LCLX Event Alarm

SPC Eigenschafte ٠

> Tagname SPC_FLO1_SWL_KPI Periode für Durchschnittsberech Ourchschnittliche SamplingPeriode bmaß erlaubt

> > SP Abmaß artaub

Referenz Durchschnit

Referenz Stdandardabweichung

Kontrollenübergrenze

Kontrollenuntergrenze
 n. def.

Erstellungsdatut 26.3.09 17:40 Autor

· Anmerkung

KPI - Regel . FileInform e XML-Filename Dateiname des Diagrammer SPC_FLG1_SWL_KPI_Xbar Chart.png

Runtest1,5

.

.

SPC_FLG1_SWL_KPI

 Lower Control Limit
 0.5 FileInformation XML-Filename:

Prozessgüteüberwachung

SPC_KOND, Kondensatorgüte, KPI (SR::EPOS) 40HLC10CP001_XQ50, Druckverlust Luvo, luftseitig (TEST) SPC_LVW_HYDR, LUVO Druckverlust, KPI (SR::EPOS) 40LBB0 CT001 XQ50, Dampftemperatur ZÜ-Austritt

Kesselspeisepumpe 1

40LAC10CY021_XQ50, Lagerschwingung vertikal 40LAC10CY022 XQ50, Lagerschwingung horizontal 40BBA03EW383 XQ50, Stromaufnahme

Kesselspeisepumpe 2

40LAC20CY021 XQ50, Lagerschwingung vertikal 40LAC20CY022_XQ50, Lagerschwingung horizontal 40BBB03EW383 XQ50, Stromaufnahme

steag

Fault Trees

- Models and analyzes faults in the process.
- Composed of logic diagrams that display the state of the system and the states of the components
- Constructed using Drag & Drop technique

SHSprayVLVFaul

SH_SF_V_L_CL_FL

SH_SF_V_L_FLOW

 Does not need programming expertise for building such trees.

SH SF V L1 AT

SH_SF_V_L_CL

V L1 POS SH SF V L2 POS

... Ideas & Solutions for Tomorrow

