LMB's experience of Supercritical Plants

Aug 31, 2015 By S. K. Chakraborty

Aug 31, 2015/SKC 1/34

Presentation Flow

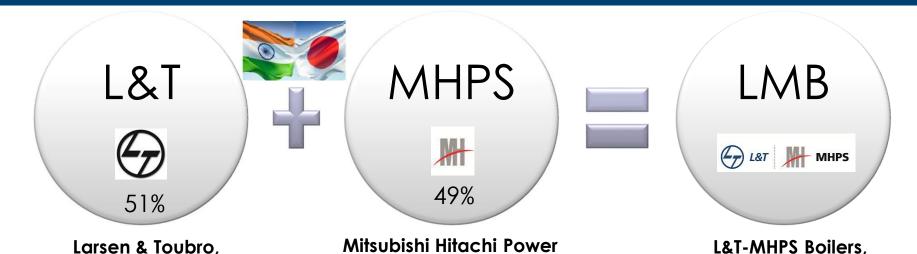
Overview of L&T - MHPS Boilers

Projects under execution

Supercritical Plant Experience

Aug 31, 2015/SKC

2/34


L&T-MHPS BOILERS

Overview of L&T-MHPS Boilers (LMB)

Aug 31, 2015/SKC 3/34

Joint Venture of L&T and MHPS

Incorporation

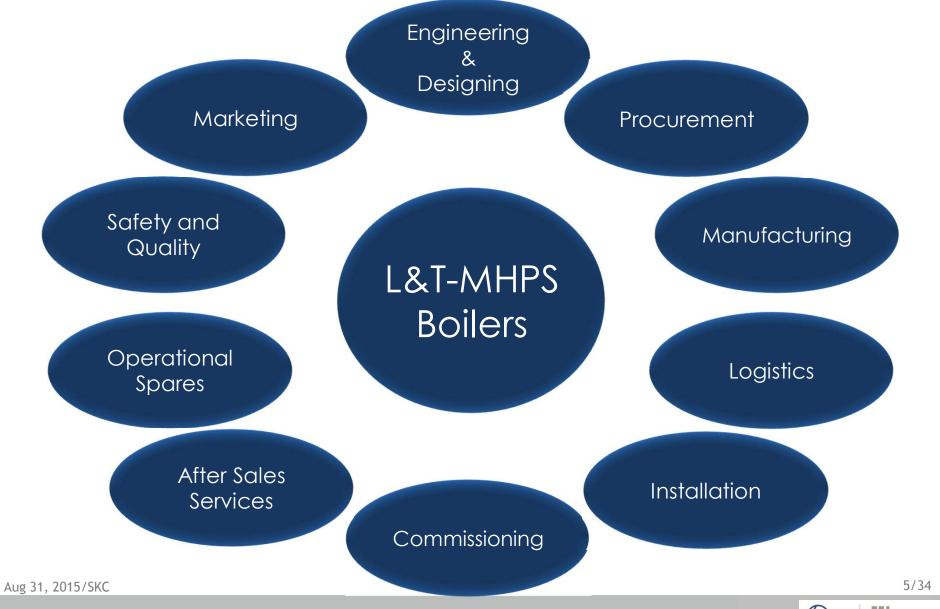
India

L&T-MHPS Boilers was incorporated on

April 18, 2007 (20 Years Term) Scope

System, Japan

Complete
Technology
Transfer of
Supercritical
Boilers


Product Range

India

Supercritical
Boilers of 500 MW
and above
including
Pulverizer

Aug 31, 2015/SKC 4/34

LMB's Scope of Business

Projects Under Execution

Aug 31, 2015/SKC 6/34

Projects Under Execution – Domestic Orders

Steam Generator and Associated Auxiliaries

Jaypee
Nigrie
2x660 MW

MahaGenco Koradi 3x660 MW

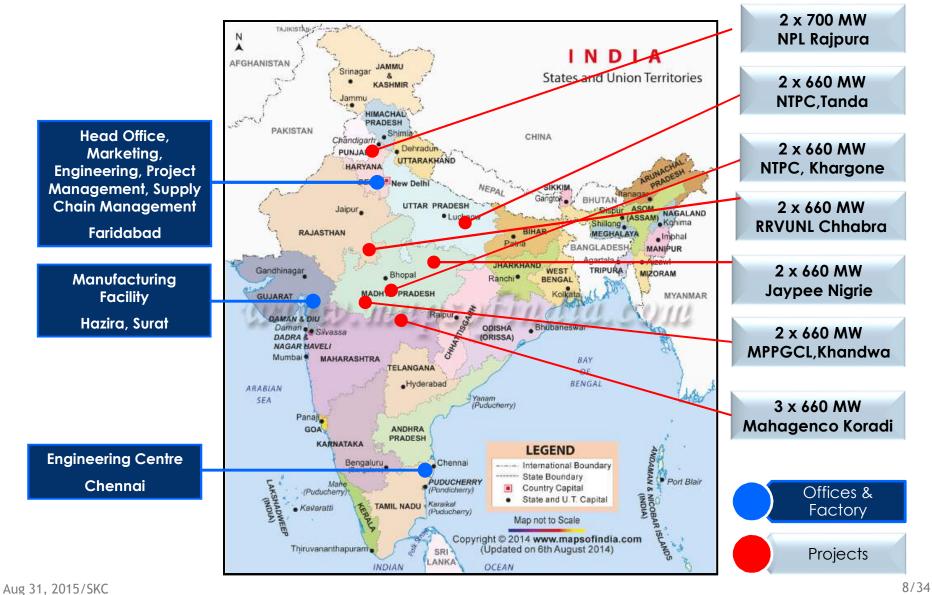
Nabha Power Ltd, Rajpura 2x700 MW

RRVUNL, Chhabra 2x660 MW

MPPGCL, Khandwa 2X660MW

NTPC, Tanda and Khargone

2X660 MW


COD of Rajpura U-1& 2 & Jaypee U-1&2 has been Achieved.

Aug 31, 2015/SKC

7/34

Offices, Manufacturing Facility & Project Sites Location

NPL Rajpura Plant Experience

Aug 31, 2015/SKC 9/34

Plant as viewed from a distance

Aug 31, 2015/SKC 10/34

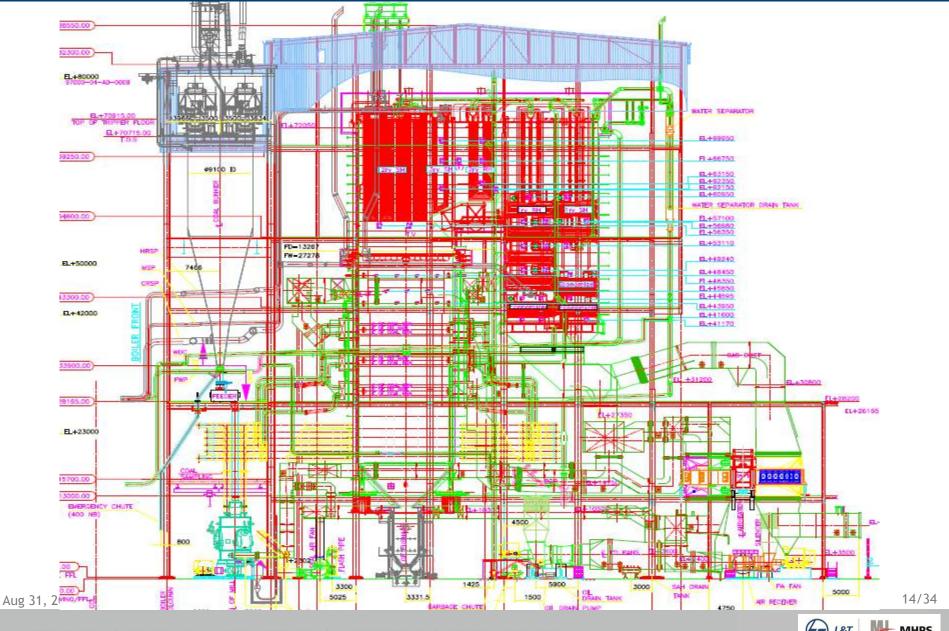
Some Facts

- L&T-MHPS Boilers Pvt. Ltd. has successfully commissioned two units of supercritical boilers for 2 x 700MW Rajpura Thermal power project.
- > Both units have achieved commercial operation from January 2014 and June 2014 respectively.
- First supercritical unit operating commercially fully designed and manufactured by a domestic Boiler manufacturer (L&T-MHPS).

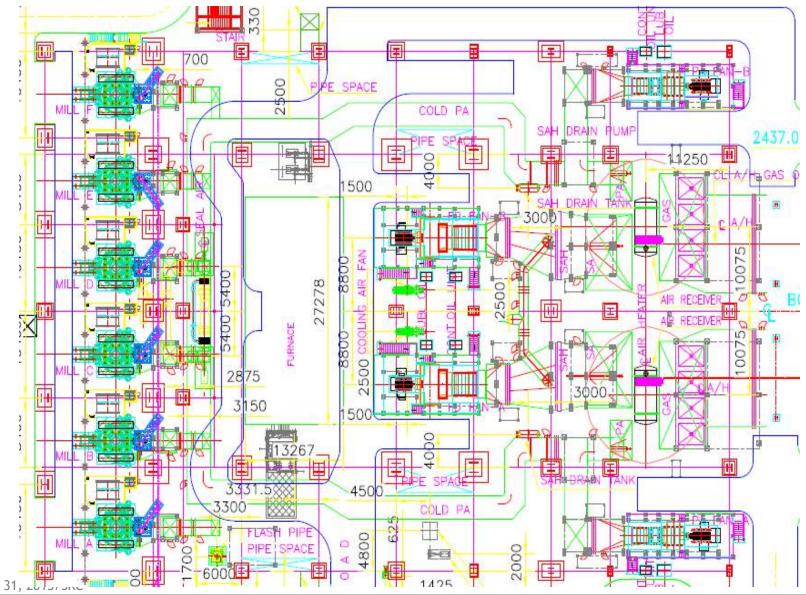
Aug 31, 2015/SKC 11/34

SALIENT INFORMATION

Customer Name	Nabha Power Limited.	
Owner's Consultant	Tata Consulting Engineers Limited.	
Plant Gross output / Unit	700 MW	
Boiler Type	Once through, Super Critical, Sliding pressure, Vertical Wall, Two Pass design	
Firing System	Twin Fire Vortex, 8 Corner, CCF, APM Burner (Low Nox)	
Steam Condition	SH outlet: 2,322 tph, 25.12 Mpa(g), 568 deg. C RH Outlet: 1,886 tph, 5.93 Mpa(g), 596 deg. C	
Fuel	Main Fuel: Indian Coal, GCV: 4,400 kcal/kg, Ash:33% Start up Fuel: HFO - 30%, LDO - 10% heat output	
Pulverizer	Model No: MVM 32R, 6 Nos, Front Mill arrangement	
Actual Project Schedule Unit #1	NTP: 18-01-2010, COD: 30-01-2014 (17-01-2014)	
Actual Project Schedule Unit #2 Aug 31, 2015/SKC	NTP: 18-05-2010, COD: 09-06-2014 (17-05-2014)	


COAL ANALYSIS

IND	DIAN COAL		DESIGN COAL	WORST COAL
PRO	OXIMATE ANALYSIS (wt % AR)			
INH	IERENT MOISTURE	%	-	-
TO	TAL MOISTURE	%	10.5	14.0
ASI	Н	%	33.0	34.0
VO	LATILE MATTER	%	22.0	20.0
FIX	ED CARBON	%	34.5	32.0
GC	V	kJ/kg	4400	3860
HG	I	-	55	50
ULT	TIMATE ANALYSIS (wt % AR)			
CAI	RBON	%	45.5	40.0
HYI	DROGEN	%	2.75	2.70
OX.	YGEN	%	6.21	7.65
NIT	ROGEN	%	1.2	1.2
SUI	LPHUR	%	0.4	0.45
МО	ISTURE	%	10.5	14
ASI	Н	%	33.0	34.0
Aug 31, © A	RBONATE + PHOSPHOROUS	%	0.44	-


13/34

Boiler General Arrangement (Elevation)

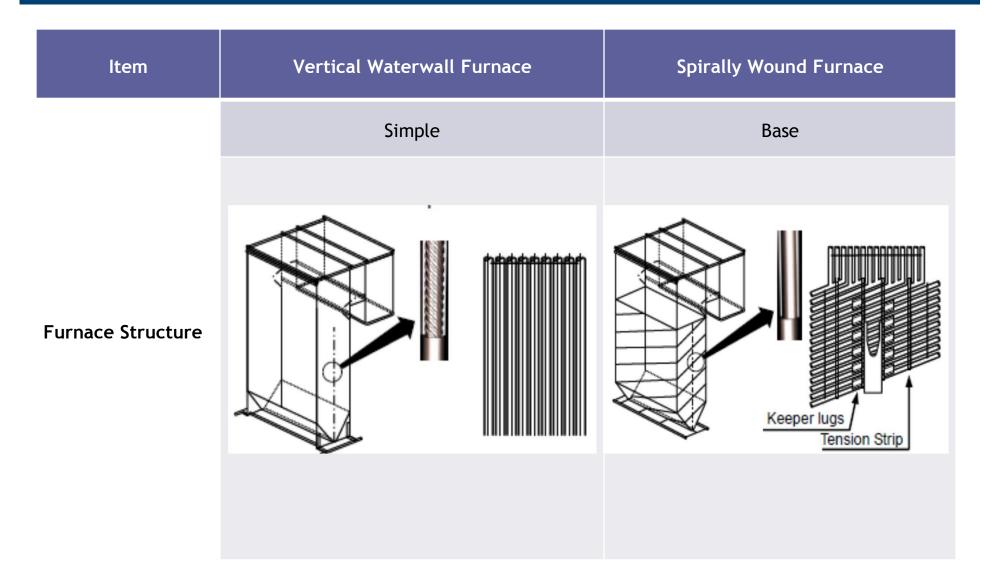
Boiler General Arrangement (Plan)

15/34

Special Feature - Vertical Water Wall

- First of its kind in Indian supercritical Boiler industry with latest and advanced technology features such as
 - Vertical water wall technology
 - Twin fire vortex with eight corner circular firing (CCF)
 - Low NOx burners suitable for the sub-bituminous Indian coal.
- An optimized rifled tube geometry which has superior hydrodynamic and heat transfer characteristics has enabled the use of lower mass flux.

Aug 31, 2015/SKC 16/34



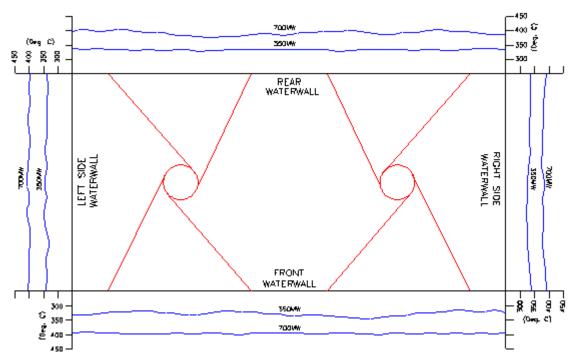
Special Feature - Vertical Water Wall

- A vertical wall furnace has many advantages over a spiral furnace especially in the manufacture and supporting philosophy. It also results in a lower pressure drop in the furnace circuit.
- Orifices are installed in the inlet to the water walls in order to ensure uniform enthalpies at the lower furnace outlet.

Aug 31, 2015/SKC 17/34

Special Feature - Vertical Water Wall (contd.)

Aug 31, 2015/SKC 18/34


Special Feature - Vertical Water Wall (contd.)

Description	Vertical waterwall Supercritical Boiler	Spiral wound waterwall Supercritical Boiler	
Mass Velocity at Rated load.	1,300 ~1,900 kg/m ² s	3,000 kg/m ² s	
Waterwall Tube Type	Rifled Tube	Smooth Tube	
Metal Temperature	Low	Base	
Flow Stability	Better	Base	
Flow Dynamics	$-\Delta P \Rightarrow +\Delta G \begin{bmatrix} \text{Flow} \\ \text{Increase} \end{bmatrix}$ $\Delta P_{\text{Friction}} = \lambda \frac{\gamma}{2g} V 2$ $\Delta P_{\text{Static}} = \gamma H$ ΔP	+ΔP → -ΔG Flow Decrease ΔP Friction Increase Static Decrease +ΔQ Q	
Flow Characteristics	Better	Base	
Temperature Unbalance	Small	Large	

Aug 31, 2015/SKC 19/34

Special Feature - Vertical Water Wall (contd.)

Furnace waterwall temperature profile (Rajpura Unit #1)

Furnace Waterwall	Front		Rear		Right Side		Left Side	
Description ↓ Load →	350 MW	700 MW	350 MW	350 MW	350 MW	350 MW	350 MW	350 MW
Temperature Difference	15	14	6	12	8	9	11	7

Boiler Furnace Waterwall Tube Temperature (Rajpura Unit#1)

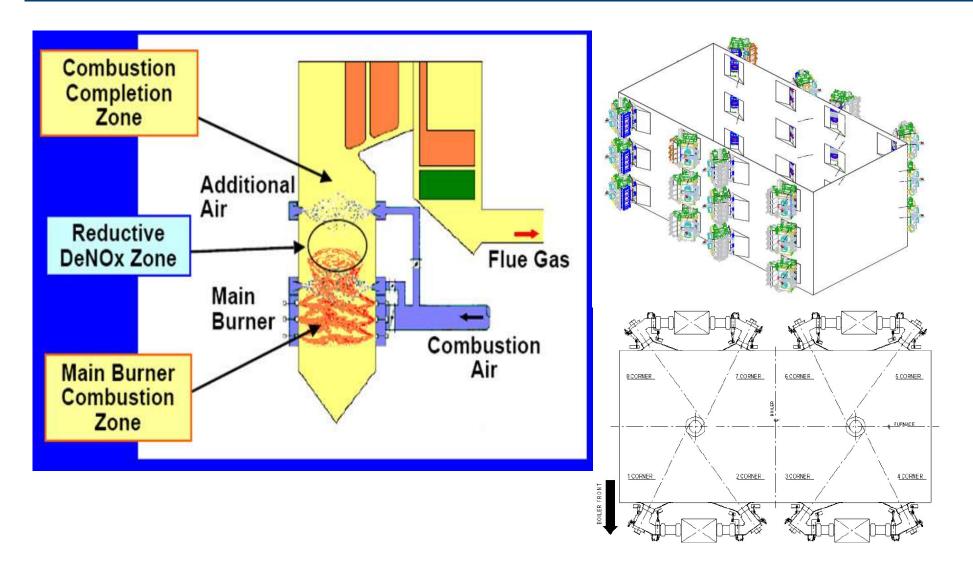
Aug 31, 2015/SKC 20/34

Special Feature - Circular Corner Firing System

- Circular corner firing (CCF) system is adopted in Rajpura project as per L&T-MHPS design, which is first of its kind in the Indian boiler industry.
- Eight burners are arranged at each elevation by creating eight corners. This arrangement creates two fire vortex in the furnace at each plane.
- All eight burners at each elevation are feed by one pulverizer.

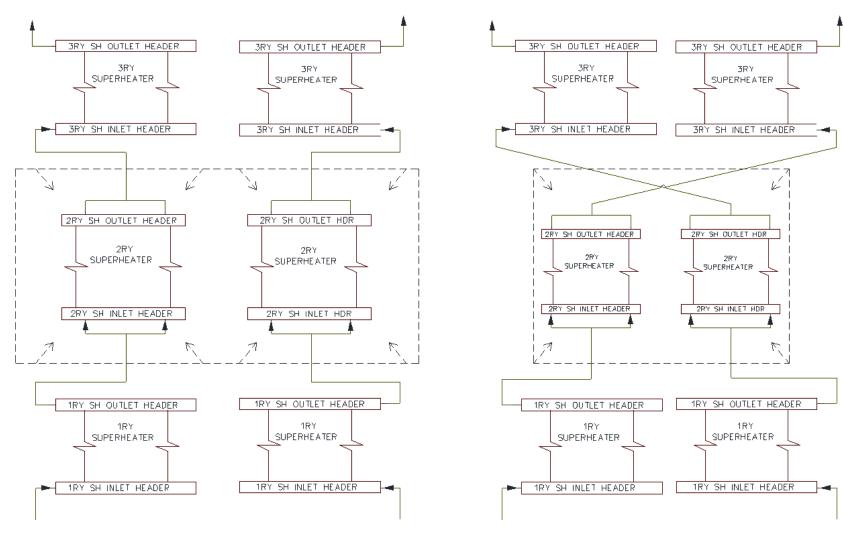
O con MI surre

L&T-MHPS BOILERS


Special Feature - Circular Corner Firing System

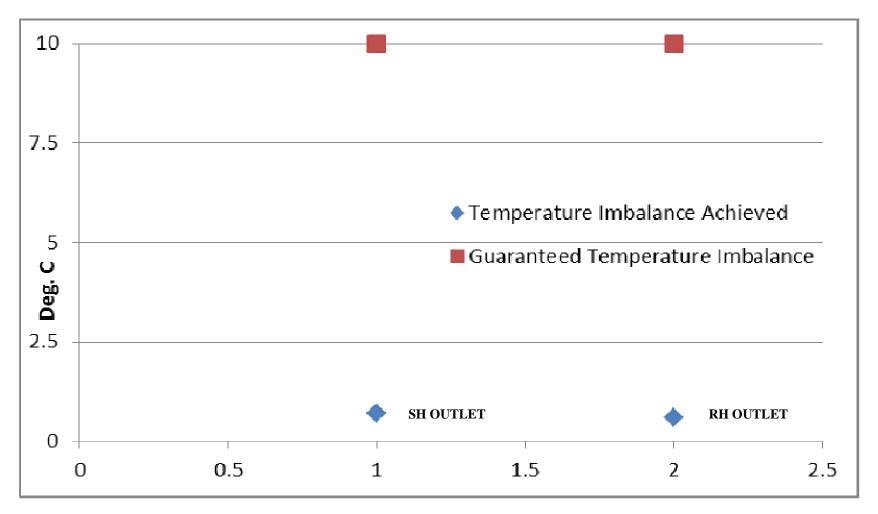
- With this CCF system and two fire vortex (clockwise / counter clock wise) design, the flue gas distribution in the furnace is almost uniform and distributed throughout the entire furnace plane.
- The twin fire vortex eliminate the need for a criss cross arrangement of SH & RH, which is normally adopted in the typical single fire vortex design or in wall fire design.

Aug 31, 2015/SKC 22/34


BURNER ARRANGEMENT

Aug 31, 2015/SKC 23/34

Special Feature - Circular Corner Firing System (contd.)



Without Criss-Cross Arrangement

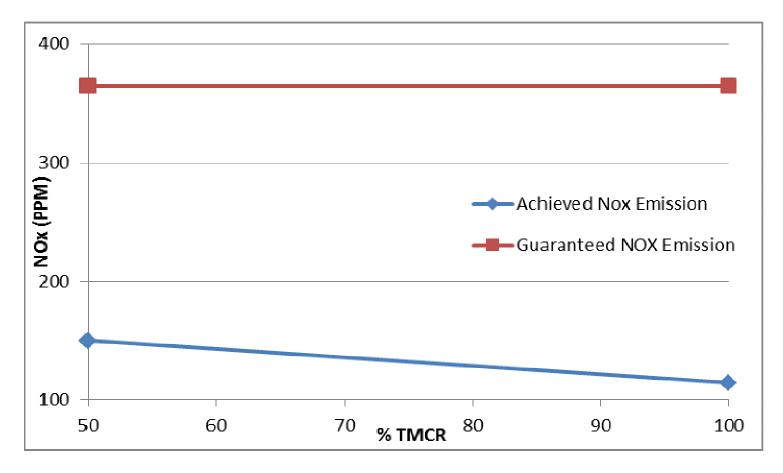
With Criss - Cross Arrangement

Aug 31, 2015/SKC 24/34

Special Feature - Circular Corner Firing System (contd.)

SH & RH outlet Pipe steam temperature Imbalance (Rajpura Unit#1)

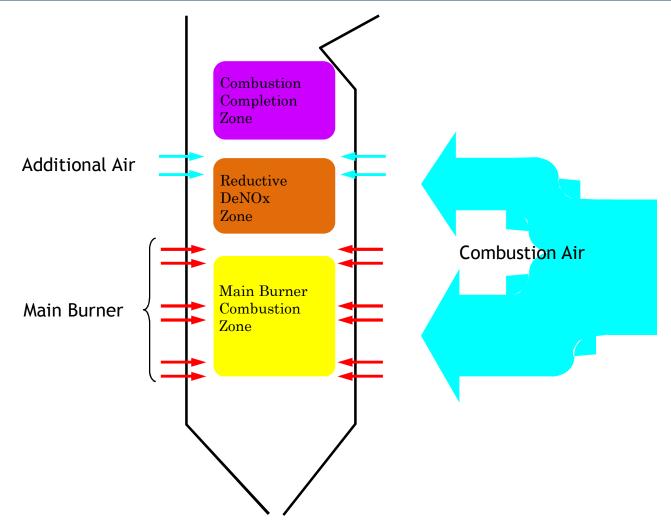
Aug 31, 2015/SKC 25/34


Special Feature - Advance Combustion system

- MHPS's advanced low NOx combustion system is adopted in this boiler even though there is no stringent requirement of NOx emission guarantee.
- A-PM (Advanced-Pollution Minimum) burner Advantages
 - Reduced NOx further promoting concentrated and lean combustion compared with a conventional continuous wind box type PM burner.
 - ❖ Better maintainability, reliability and durability of the system
- ➤ The NOx emission achieved during the plant operation is about 115 ppm as

against the guaranteed NOx emission was 365 ppm with 6% O2.

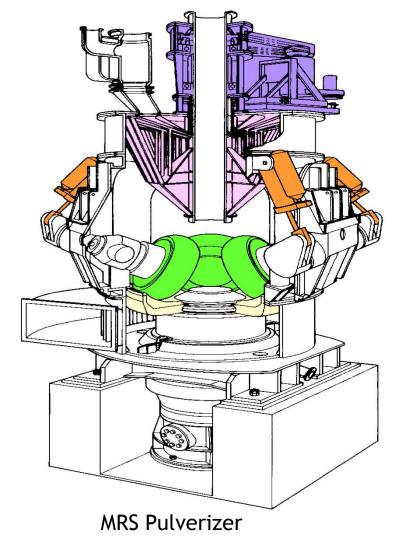
Aug 31, 2015/SKC 26/34


Special Feature - Advance Combustion system (contd.)

NOx Emission Level (Rajpura Unit#1)

Aug 31, 2015/SKC 27/34

Special Feature - Advance Combustion system (contd.)


In-furnace NOx System (A-MACT)

Aug 31, 2015/SKC 28/34

Special Feature - Advance Combustion system (contd.)

- > High fineness MRS (Mitsubishi Rotary Separator) Pulverizer
- High fineness characteristics could be obtained by using a rotary separator, thereby realizing further reductions in NOx emissions and unburned combustibles.

Aug 31, 2015/SKC 29/34

Highlights of Boiler operating Performance at Rajpura

- The boiler efficiency achieved is higher than that of the guaranteed data.
- The Boiler was designed with 15% excess air ratio, however during the combustion tuning it is also observed that the Boiler has given excellent performance even with 12% excess air ratio.
- ➤ Boiler rated condition can be achieved without any heating surface modification even through there are several input changes from the design condition.

Aug 31, 2015/SKC 30/34

Highlights of Boiler operating Performance at Rajpura

- ➤ It is experienced that the main fuel as coal is introduced at 10% TMCR (70 MW) load The introduction of coal at lower load is possible due the high efficient A-PM burner.
- As the main fuel can be introduced at lower load, the Fuel oil consumption for entire life cycle of the plant can be reduced considering the number of startup.
- The control of RH outlet temperature is done with the gas biasing damper.
- The RH spray flow is maintained zero from entire control range of the Boiler (60% BMCR to 100% BMCR).

Aug 31, 2015/SKC 31/34

BOILER PERFORMANCE SUMMARY

Parameters	Guaranteed	Achieved_Unit#1	Achieved_Unit#2
Excess Air (%)	15	13.3 (-1.7)	12.1 (-2.9)
Boiler Efficiency (%)	88.7	90.03 (+1.33)	90.20 (+1.50)
Aux. Power Consumption (kW)	13,850	13,210 (-640)	12,270 (-1580)
Nox Emission @ 6% O2 (PPM)	365	115 (-250)	115 (-250)
Steam Condition	SH outlet: 568 deg. C RH outlet: 596 deg. C	SH outlet: 568 deg. C RH outlet: 596 deg. C	
Steam Temperature Imbalance	SH outlet: 10 deg. C RH outlet: 10 deg. C	SH outlet: 0.7 deg. C RH outlet: 0.6 deg. C	SH outlet: 0.2 deg. C RH outlet: 1.6 deg. C
RH Spray (%)	0	0	0
BMCR Flow (tph)	2,322	2,332	2,352
Furnace Water wall Temp. Difference	-	35 to 50 deg. C	35 to 50 deg. C

Aug 31, 2015/SKC 32/34

Project Schedule and Achievements

- Project schedule monitoring, engineering, manufacturing, construction and commissioning has key importance for completion of any project on time.
- The Rajpura project was completed ontime due to close co-ordination with L&T-Power as EPC contractor, world class manufacturing facility with latest machinery, manufacturing methodology at Hazira and advance construction technology (Block lifting).
- > The plant commissioning activity and commercial operation was declared on the due date.

Unit No.	NTP	COD Planned	COD Achieved
Unit #1	January, 2010	January, 2014	January, 2014
Unit #2	May, 2010	May, 2014	June, 2014

Aug 31, 2015/SKC

L&T MHPS BOIL FRS

33/34

Aug 31, 2015/SKC 34/34