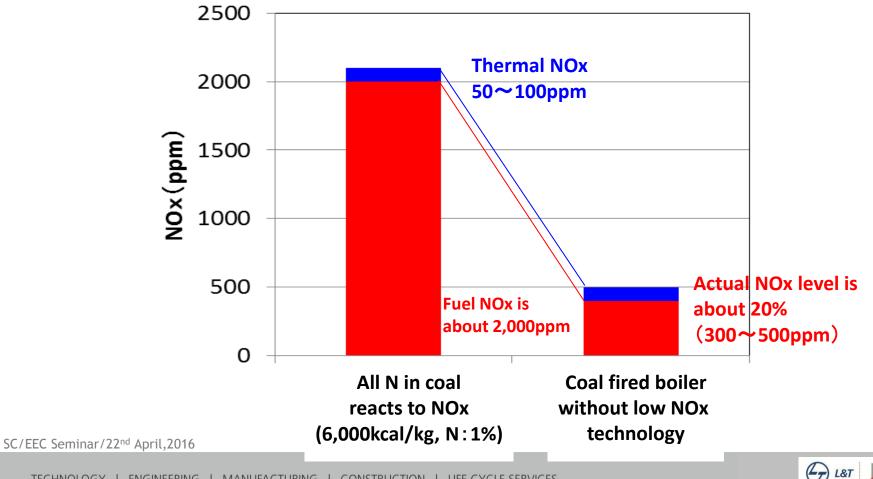
MECHANISM OF NOx CONTROL

SC/EEC Seminar/22nd April,2016



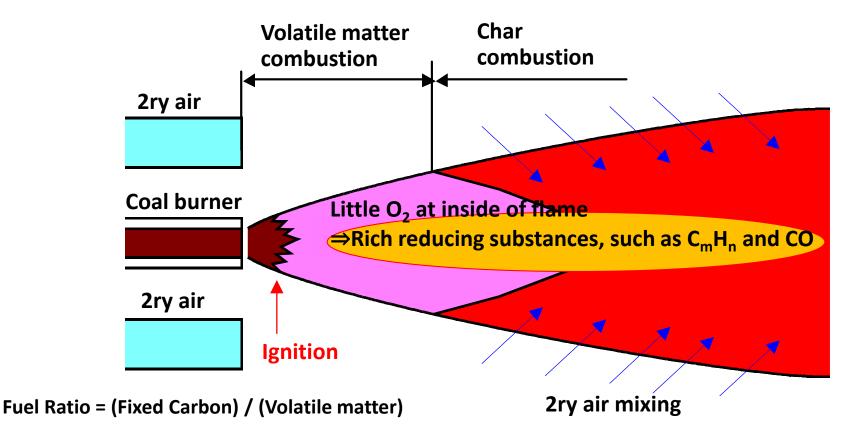
TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES

^{2. Contrent} MECHANISM OF NOX CONTROL

ONOx generation in the coal fired boiler?

Thermal NOx and Fuel NOx are the main factors of NOx generation...

TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES


2

MHPS

L&T-MHPS BOILERS

NOx Generation Mechanism on Coal Combustion

 \Rightarrow rich reducing substances exist at inside of flame.

TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES

^{2. Contrent} MECHANISM OF NOX CONTROL

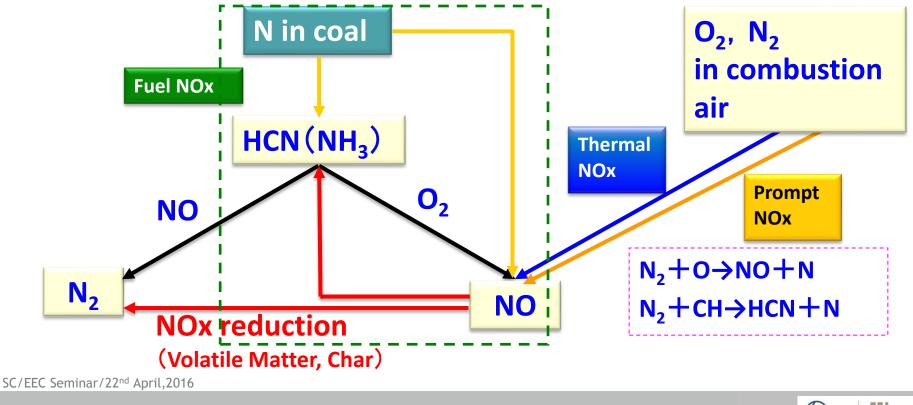
NOx reduction mechanism is based on

<1> How to reduce NOx formation in the early stage of combustion

<2> Promote reduction reaction from NOx to HCN / NH3 as intermediary compounds

<3> Decrease re-formation of NOx from HCN / NH3

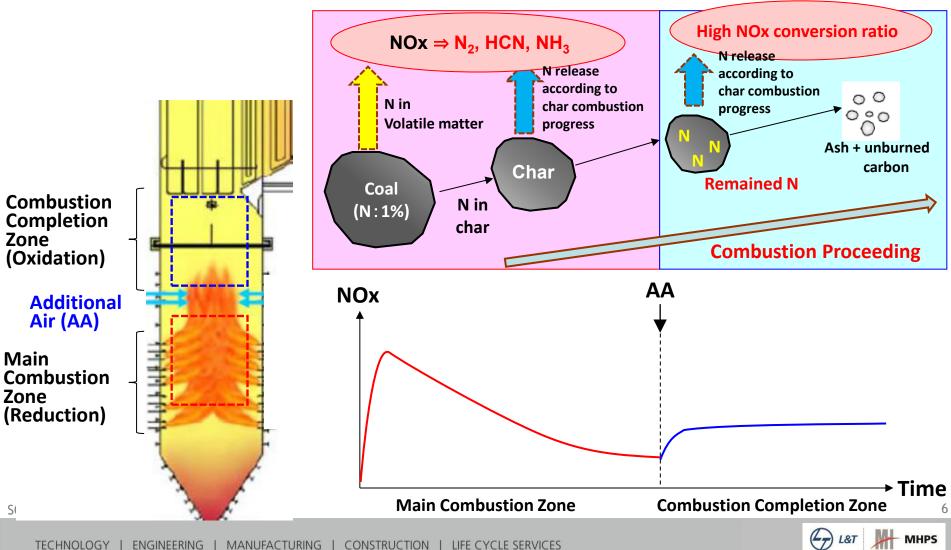
SC/EEC Seminar/22nd April,2016



4

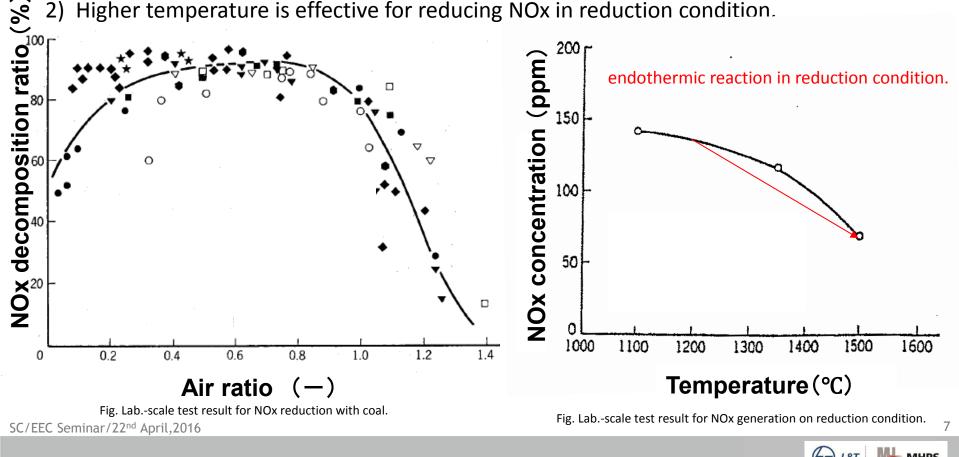
TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES

MECHANISM OF NOx CONTROL


- NOx level is about 2,000 ppm in case all of N in coal reacts to NOx.
 - \Rightarrow Fuel NOx governs NOx generation
- NOx level is about at most 500ppm without low NOx technology.
- \Rightarrow NOx reduction occurs with reducing substances released from coal.
- \Rightarrow The main point for low NOx combustion is how to reduce NOx efficiently.

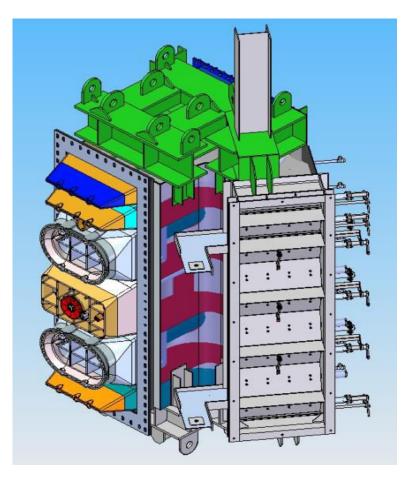
MECHANISM OF NOx CONTROL

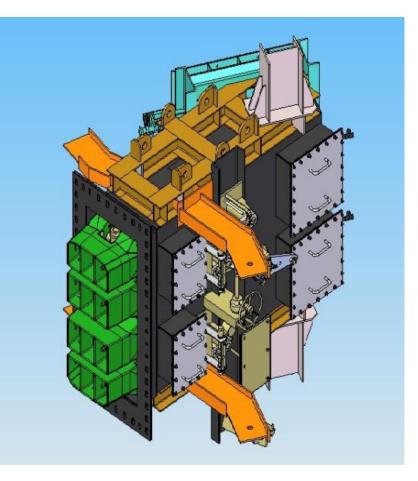
- NOx profile :main combustion zone and combustion completion



L&T-MHPS BOILERS

MECHANISM OF NOX CONTROL


ONOx reduction basic concept(MACT)


- It is important to keep reduction condition on main combustion zone by additional air (AA).
- Theoretically, NOx is reduced enough at burner zone air ratio under 1.0.
 - 1) Lower temperature is effective for decreasing NOx generation in oxidation condition.
- 2) Higher temperature is effective for reducing NOx in reduction condition.

S BOILERS

MECHANISM OF NOX CONTROL

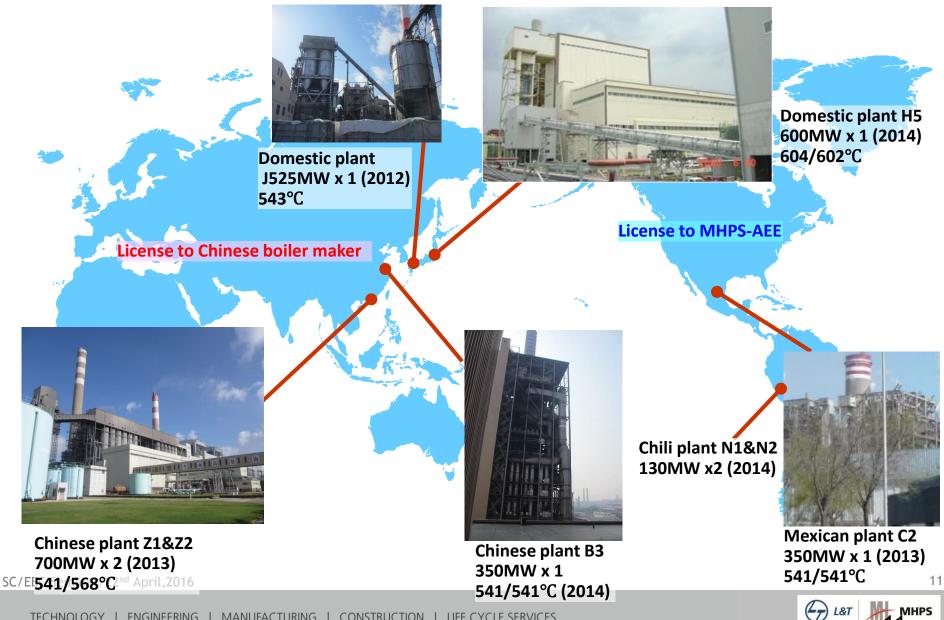
AA PORT WINDBOX

SC/EEC Seminar/22nd April,2016

MAIN WINDBOX

TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES

SC/EEC Seminar/22nd April,2016



TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES

Unit	Country	Output	Operation
K Plant	Japan	450t/h	1996
M1 Plant	Japan	1,000MW	1998
N1 Plant	Japan	460t/h	2000
T2 Plant	Japan	700MW	2000
K1 Plant	Japan	700MW	2002
H5 Plant	Japan	600MW	2004
Ma1 Plant	Japan	900MW	2004
B1,2 Plant	Thailand	700MW	2006, 2007
P1 Plant	Mexico	651MW	2010
P3 Plant	Indonesia	866MW	2012
H6 Plant	Japan	600MW	2013
R1 Plant	India	700MW	2014
N1,2 Plant	India	660MW	2014, 2015
K8 Plant	India	660MW	2015

TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES

MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES TECHNOLOGY ENGINEERING

L&T-MHPS BOILERS

2 x 700 MW NABHA POWER PLANT, RAJPURA, PUNJAB

SC/EEC Seminar/22nd April,2016

TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES

SC/EEC Seminar/22nd April,2016

TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES

As per Ministry of Environment, Forest and Climate Change Notification dated Dec 7, 2015

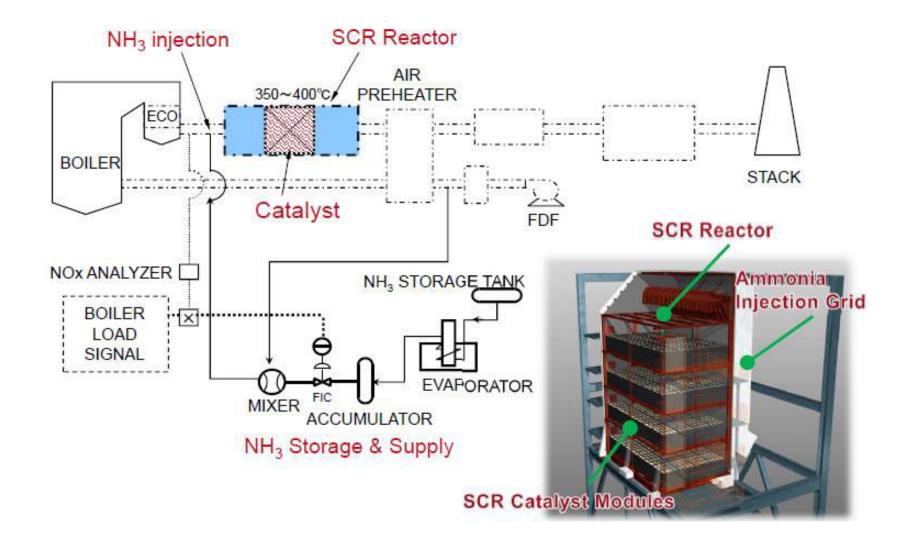
S.N.	TPP Installation Period	NOx requirement	Deadline
1	Before Dec 31, 2003	600 mg/Nm ³	Within 2 year from notification
2	Between Jan 01, 2004 to Dec 31, 2016	300 mg/Nm ³	Within 2 year from notification
3	From Jan 01, 2017	100 mg/Nm ³	Must meet upon completion

SC/EEC Seminar/22nd April,2016

TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES

Post combustion control methods used to reduce NO_X to molecular nitrogen through catalytic conversions:

<1> Selective Non-Catalytic Reduction (SNCR) <2> Selective Catalytic Reduction (SCR)


The selective catalytic reduction process removes nitrogen oxides (NO_X) from flue gases by injecting ammonia (NH₃) into the flue gas and passing the well mixed gases through a catalyst bed. NO_X reacts with NH₃ in the presence of the catalyst to produce nitrogen (N₂) and water (H₂O) as shown in the following equation

 $4NO + 4NH_3 + O_2 = 4N_2 + 6H_2O$

15

SC/EEC Seminar/22nd April,2016

SC/EEC Seminar/22nd April,2016

TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES

<1> SCR De NOx reactor including catalyst

<2> Ammonia storage facilities

<3> Ammonia loading and unloading facilities

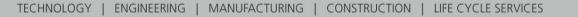
<4> Ammonia gas preparation

<5> Air pre-mixing system

<6> Ammonia injection grid

<7> Soot blowers

<6> Control system


17

SC/EEC Seminar/22nd April,2016

CHALLENGES IN INSTALLATION OF SCR

S	Doquiromont	Domarka
No	Requirement	Remarks
1	SCR is to be located upstream of the Air Preheater	Tight layout especially in existing plants
2	High dust burden in Indian coals	Catalyst plugging and erosion of catalysts is a matter of concern
3	Formation of ammonium bisulphate	Fouling and plugging of Air preheater
4	Hazardous nature of Ammonia	Safety issue
5	Availability of ammonia	Vendors to be identified
6	Disposal of spent catalyst	Catalyst Life cycle management
7	Pressure drop across SCR	Fans need to be resized
8	Low load operation to avoid ammonium bi- sulphate formation	Layout requirements for economiser gas bypass to be considered.

SC/EEC Seminar/22nd April,2016

CONCLUSION

SC/EEC Seminar/22nd April,2016

TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES

- New Emission Norms 2015
- Advanced Combustion Technology for Coal Combustion
 - CCF Uniform Firing in Furnace
 - PM Burner Low NOx Burner
 - MACT NOx Removal System in Furnace
 - MRS Mill High Performance Vertical Mill
- Advanced Low NOx combustion technologies can help in the optimization of post combustion control (SCR) technology

SC/EEC Seminar/22nd April,2016

L&T-MHPS BOILERS

SC/EEC Seminar/22nd April,2016

TECHNOLOGY | ENGINEERING | MANUFACTURING | CONSTRUCTION | LIFE CYCLE SERVICES