

Flue Gas Desulfurization Wet Limestone-Gypsum Process

2016

A company that researches ways to safeguard the natural beauty of our planet. A company whose mission is to keep our environment green to protect future dreams. A company that co-exists with nature, recognizing that the environment is the most valuable asset. KC Cottrell is preparing for the future with a firm commitment to the environment.

Contents

I. Introduction

- П. Type of FGD Process & Regent
- III. Wet Limestone Gypsum Process
- IV. KC's FGD References

Current Regulations – Thermal Power Plants KCKC Cottrell

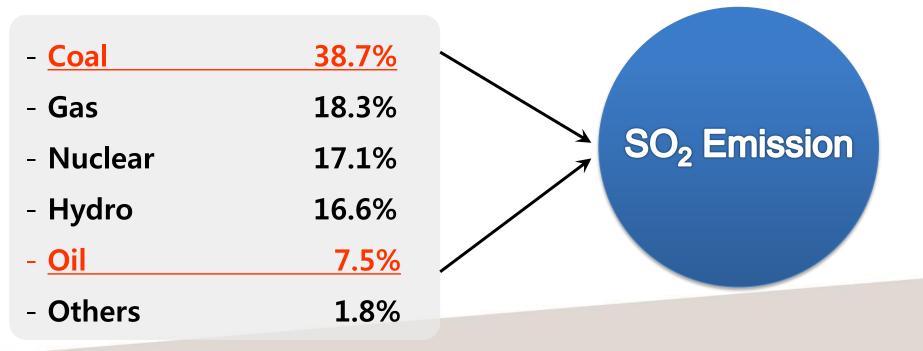
Air Pollution – Current Regulations in India as per MoEF [#] Notification	
dated December 7, 2015	

Pollutants (Unit: mg/Nm ³)	*TPPs installed before December 31, 2003	*TPPs installed after 2003 upto December 31, 2016	*TPPs to be installed from January 1, 2017
SO ₂	200	200	100
РМ	100	50	30
NO _X	600	300	100
Hg	0.03	0.03	0.03

*The data mentioned above is for TPPs (Thermal Power Plants) > 500 MW. Only for SO_2 emissions for smaller th an 500 MW units, the standard is 600 mg/ Nm³, for units installed before 31st Dec 2003 and after 2003 upto Dec 31, 2016.

[#]MoEF – Ministry of Environment, Forests & Climate Change (Control Pollution Control Board)

TPPs (units) shall meet the limits within two years from date of publication of the notification



I. Introduction

Combustion of fossil fuels (e.g., coal and oil) \rightarrow SOx

resulting in emissions of sulfur dioxide (SO₂) which can harm human health and deteriorate environments (Acid deposition & Soil acidification)

Total World Electricity Generation (2001)

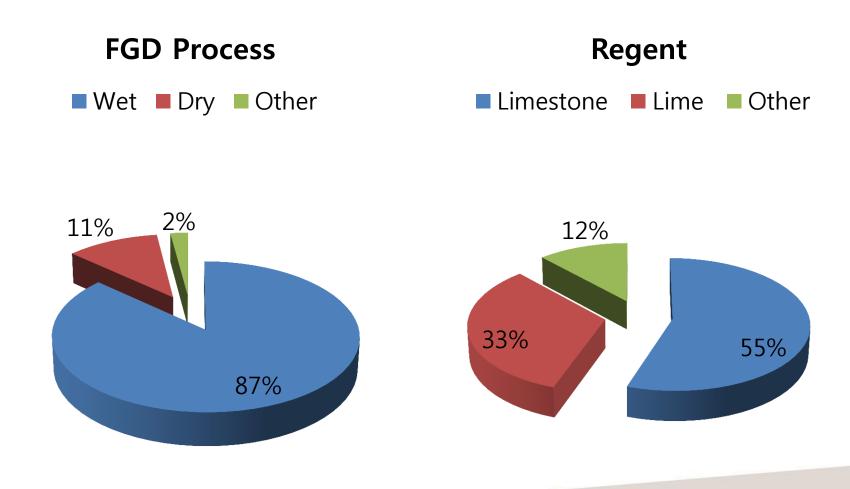
Influence of Sulfur Oxides(SOx)^{KC Cottrell}

Decrease of Visibility Range	Decrease visibility by absorbing or diffracting sun light in the atmosphere along with floated particles.
Bad Influence on HumanBody	Incidence of chronic diseases at eyes, nose, neck or bronchus by exposure for long time.
Bad Influence on Green Plants	Decrease production and growth of plants by interrupting photosynthesis due to the black spot or chlorosis.
Ecocide	Destruction of ecosystem by acidifying land or river due to acid rain or acid snow and corroding architectures.

KC Cottrell **How to Control Sulfur Oxides(SOx)**

Fuel Desulphurization Process

Method to remove SOx in the fuel prior to combustion


ex) Convert to low sulfur fuel by using catalyst with hydrogen in crude

Flue Gas Desulphurization Process

Method to remove SO₂ from emitted gas after combustion

II. Type of FGD Process and Regent

Classification Based on Process KC Cottrell

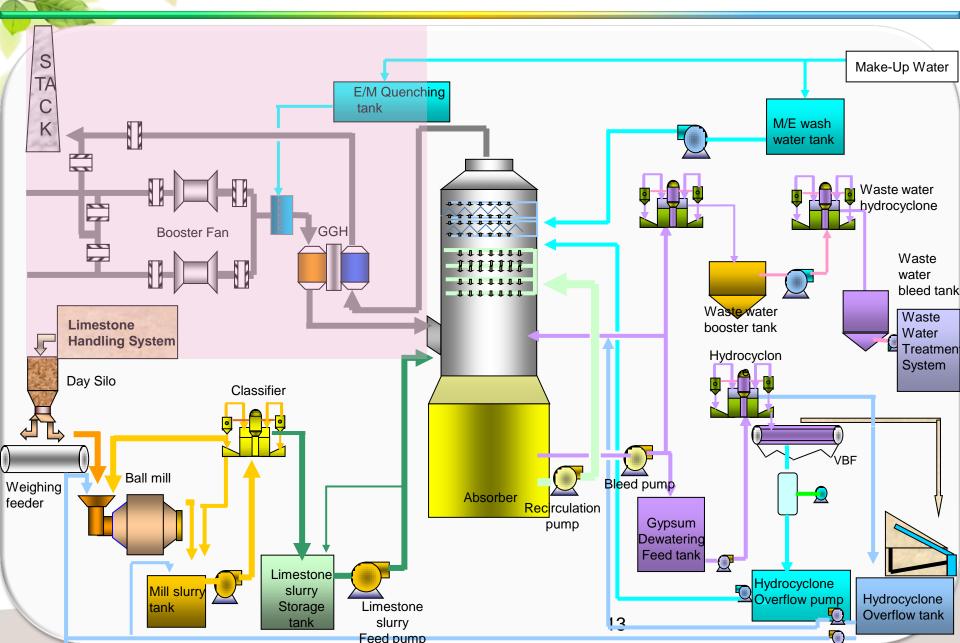
	Wet	Semi-Dry	Dry	
CharacteristicsSlurry or solution \rightarrow Reactor \rightarrow Slurry or solution		Slurry or solution → <mark>Reactor</mark> → Dry powder	Dry powder → Reactor → Dry powder	
Main reactor	Wet Scrubber	Semi Dry Reactor	Dry Injector	
Application	Application Large / Medium Scale		Medium / Small Scale	
Agents	Agents Na, Mg, Ca compounds		Mg, Ca , Na compounds	
Removal efficiency	≥ 90 %	≒ 90 %	40 - 90 %	
Waste water treatment	necessary	unnecessary	unnecessary	
Byproduct	Reuse	Landfill	Landfill	
Investment cost / operation cost High/Low		Medium/Medium Low/High		

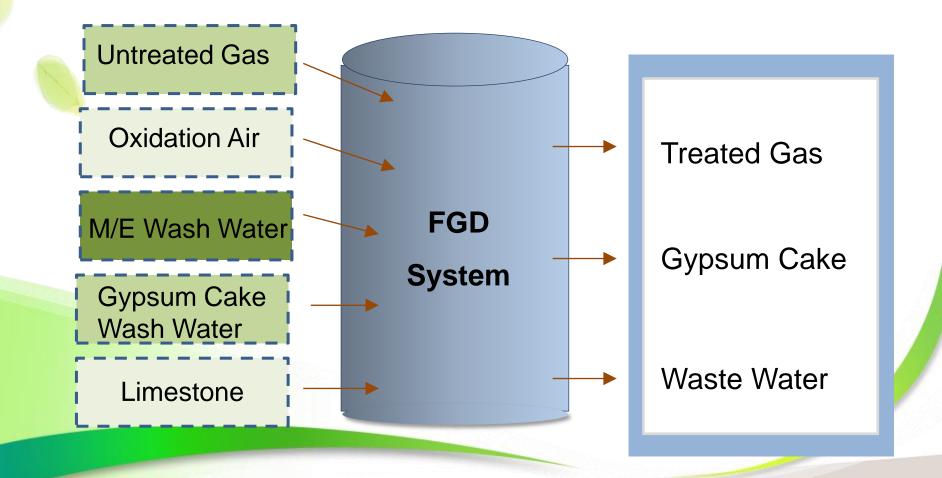
Classification Based on Chemicals

	Lime(stone) Scrubbing	Magnesium Scrubbing	Sodium Scrubbing	Ammonia Scrubbing
Kind of Chemical	CaCO ₃ , Ca(OH) ₂	$Mg(OH)_2 MgCO_3$	NaOH, Na ₂ CO ₃	NH ₃ , NH ₄ OH
Reactivity	Low	Medium	High	High
Overall Reaction Mechanism	$\begin{array}{c} \operatorname{CaCO_3}+\operatorname{SO_2}+2\\ \operatorname{H_2O}+\frac{1}{2}\operatorname{O_2} \xrightarrow{}\\ \operatorname{CaSO_4}2\operatorname{H_2O}+\\ \operatorname{CO_2} \end{array}$	$\begin{array}{l} \operatorname{Mg(OH)}_{3}+\operatorname{SO}_{2}+11\\ \operatorname{H}_{2}\operatorname{O}+\frac{1}{2}\operatorname{O}_{2} \xrightarrow{}\\ \operatorname{MgSO}_{4}12\operatorname{H}_{2}\operatorname{O} \end{array}$	NaOH+ SO ₂ → Na ₂ SO ₃	$2NH_3 + SO_2 + 2H_2O$ \rightarrow $(NH_4)_2SO_4$
Phase of Product	CaSO ₄ 2H ₂ O (Solid)	MgSO ₄ 12H ₂ O (Slurry)	Na_2SO_3 (Solution)	$(NH_4)_2SO_4$ (Solid)
Scale Potential	High	Medium	Low	Medium
Application	Power Plant	Small Power Plant	Industrial Boiler	Power Plant
Removal Efficiency	> 90 %	> 90 %	> 95 %	> 95 %
Waste Water System	Small	Big	Big	Small
Capital Cost	High	Medium	Low	Higher than Lime
Operation Cost	Low	Medium	High	Medium

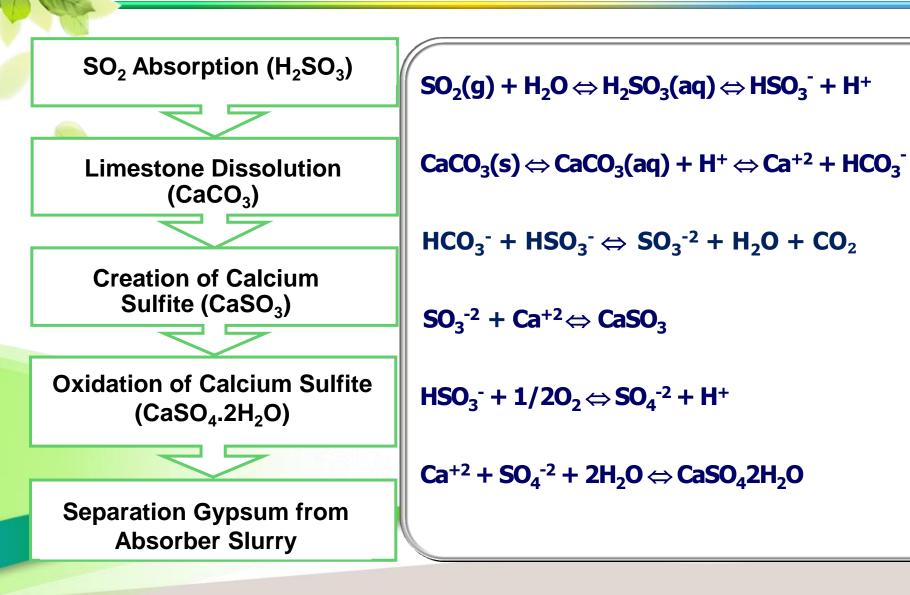
III. Wet Limestone Gypsum Process

- The flue gas scrubbing process using limestone or lime as an absorbent and producing gypsum as a byproduct represents the proven process worldwide for flue gas desulfurization
- SO₂ Removal efficiency : \geq 90%
- Availability : ≥99%
- Absorbent : Limestone
 - CaCO₃ 90%, grain size 200mesh D₇₀~325meshD₉₅
 - Stoichiometric ratio(S/R) : 1.03 ~ 1.05


- By-product : Gypsum
 - − Plaster board : free moisture \leq 10%, purity \geq 95%
 - Cement : free moisture $\leq 10\%$, purity $\geq 90\%$
 - Reclamation / Disposal etc.
- Sub-Process
 - Absorber & Auxiliary system
 - Flue gas system
 - Limestone slurry preparation system
 - Gypsum dewatering system
 - Waste water treatment system

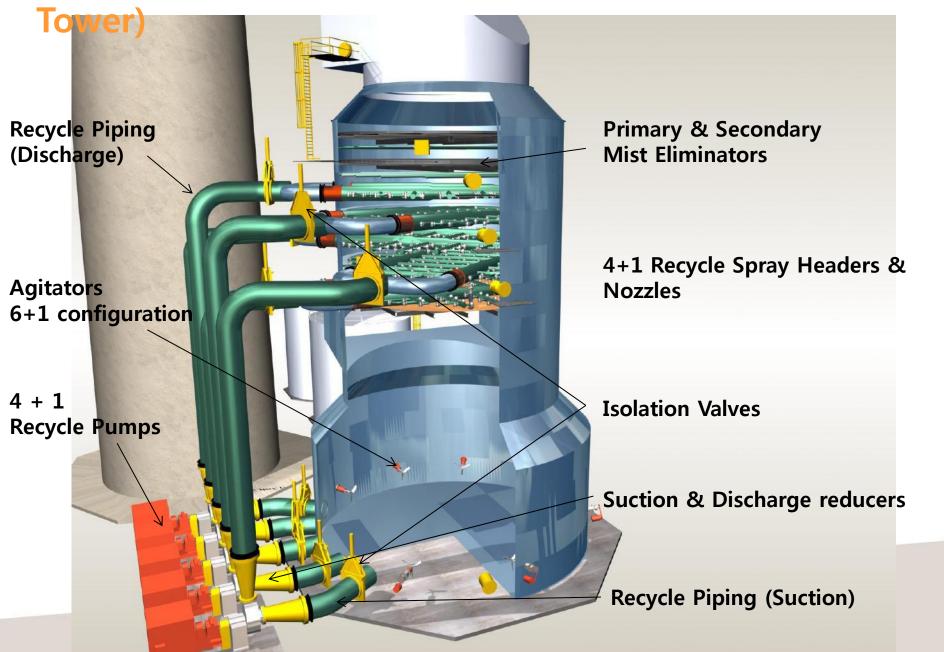

- Material Balance
 - Particulate and SO₂ removal
 - Limestone requirement
 - Scrubber system material balance
 - Overall water balance
 - Steady-state soluble species levels in scrubber liquor & LAP
- Simplified Chemical Reaction in Absorber
 - Absorption : $SO_2 + H_2O \Rightarrow HSO_3^- + H^+$ $CaCO_3 + 2H^+ \Rightarrow Ca^{2+} + CO_2 + H_2O$
 - Oxidation : $HSO_3^- + \frac{1}{2}O_2 \Rightarrow SO_4^{2-} + H^+$ $Ca^{2+} + SO_4^{2-} + 2H_2O \Rightarrow CaSO_42H_2O$

Process Chart of FGD



Overall System Mass Balance KC Cottrell

Process Chemistry for Wet Limestoner#GD



- Absorber type : Open Spray, Venturi, Tray, Packed, Jet Bubbling
- Open spray tower
 - Simply internal structure
 - Superficial gas velocity : 3 ~ 4m/s
 - Liquid / Gas ratio : 10~20ℓ/m³
 - pH in reaction tank : 4~6 (LS Slurry feed)
 - Solid Content : 15~20% (GS Slurry bleed)
 - Slurry Residence Time : 4~6 sec
 - Solid residence time : ≥15hr
 - Chloride content in reaction tank : ~ 30000ppm(WW bleed)
 - Wet-dry zone, Spray zone, ME zone, Reaction tank (LS dissolution, Oxidation, GS crystallization)
 - Material : Rubber lining, Flake glass lining, Duplex Stainless Steel, Ni-alloy(Clad or Solid)

Absorber Internals (Open Spray



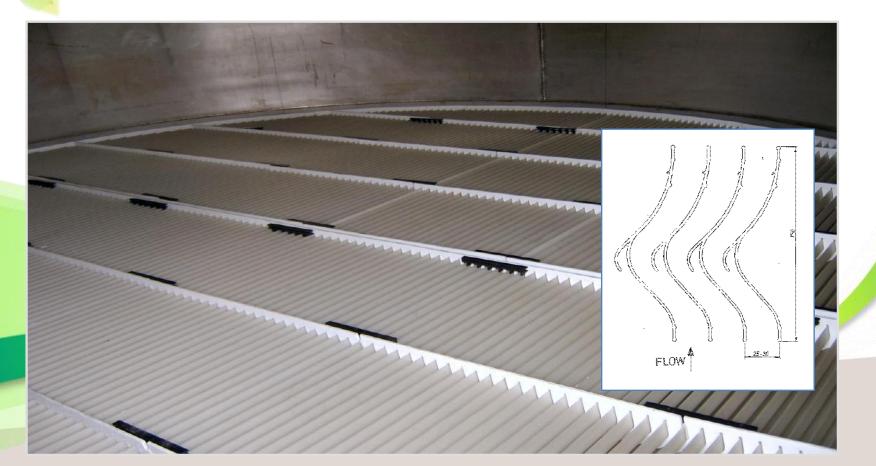
Spray(Absorption) Zone^{KC Cottrell}

•The area where Limestone (CaCO₃) suspension is injected through Spray Header and Nozzle, SO_2 of combustion gas is absorbed.

•Absorption efficiency depends on the amount of scrubbing liquid, the size of particle, velocity of gas and contact duration or ratio between gas/liquid.

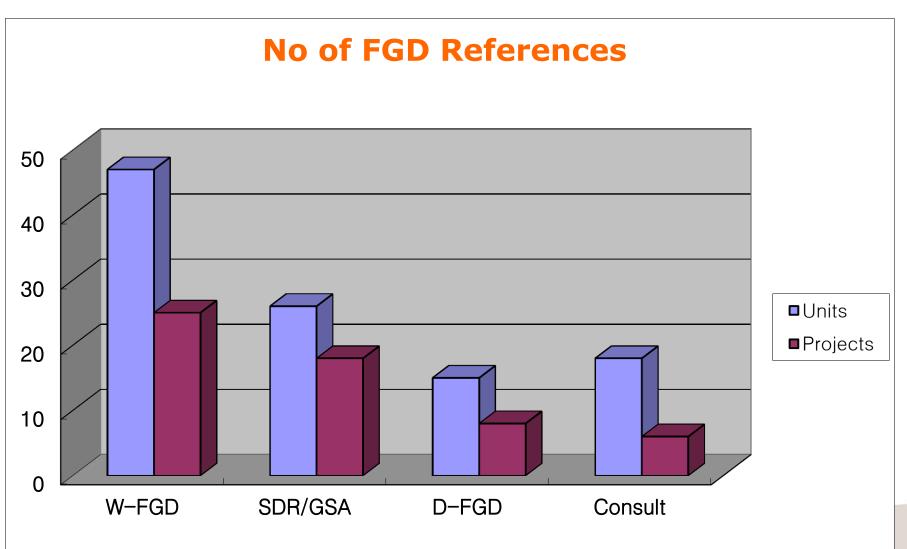
Reaction Zone

The area where the absorbent (CaCO₃) taken SO₂ change to gypsum through complete oxidation.


To help oxidation reaction, air blower with lance pipe is installed and to prevent plugging or deposition, agitator is installed in inside of reactor.

Clean Zone

Clean gas came out from Spray Zone after absorption is completed contains water droplets which result into plugging, corrosion & scale as this droplet contains supersaturated gypsum and alkaline matter. By installing mist eliminator in this area, those phenomenon will be prevented.


Trend of WFGD Technology

1. High SO2 Removal Efficiency : > 95%

- High sulfur coal and stricter regulation
- Upgrading exist FGD
- Organic acid additive(DBA)
- 2. High Speed Absorber
 - Decrease Abs size & Increase L/G reaction time
- 3. Improvement of L/G Ratio
 - Dual flow spray nozzle
 - Ring wall(LDR), Even gas distribution
- 4. Reducing GGH Leakage

IV. KC's FGD References

FGD by KC COTTRELL

- 1. Various Scales : Small to Large(10,000~4,700,000 m³/hr)
- 2. Various Process : Wet, Semi-dry, Dry
- 3. Various Reagent : CaCO3, Ca(OH)₂, NaOH, NaHCO₃, Mg(OH)₂, Waste Alkali Water, etc
- 4. Various Application : Power(Coal/Oil/Orimulsion), Steel, Cement, Incinerator, Industrial Boiler, etc.
- 5. Well Proven Technology & Optimized System Design
- 6. Capability of Turn-key base Project Execution
- 7. Utilizing the KC's Global Network and Resources
- 8. Providing Total Solution on Environmental Issues : Air Pollution, Landfill, Recycle, Incineration, etc

Limestone-Gypsum Wet FGD by KC Cottrell

- 1. Open Spray Tower
- 2. Lower Pressure Drop through Absorber (=Lower Power Consumption)
- 3. Less Gypsum Scale Potential and Less Maintenance in Absorber
- 4. Higher Operation Availability & Reliability (>99%)
- 5. Higher Availability of Reagent i.e, Lower S/R
- 6. Optimized System Design with High SO₂ Removal Efficiency

Absorber Test Tower

Tangjin T/P (4 x 500MW)

FGD Absorber

Wet Limestone-Gypsum Process
SO2 Removal efficiency: >95%
FGD commercial operation: since 1997
Scope: Turn-key FGD project including

Limestone slurry preparation
Gypsum dewatering plant
FGD waste water treatment

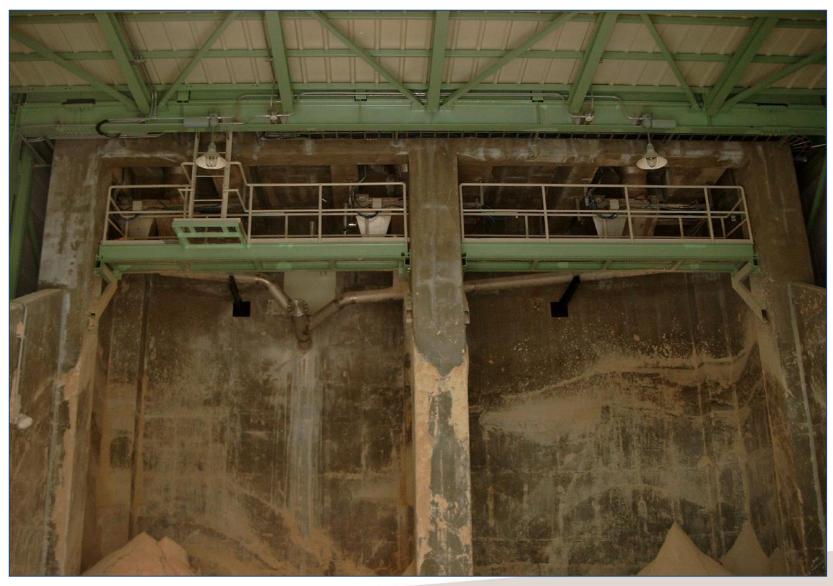
Contract Amount : 160 Mil.USD

Vacuum Belt Filter

Waste Water Treatment

Cheongju FGD for CHP & HOB

Wet Limestone-gypsum Process
CHP Boiler: 260t/hr – 61,400KW x 1unit
HOB Boiler: 150t/hr x 2units
90% SO2 removal efficiency
1%S B–C Oil (Design base)
Powdered limestone slurry preparation
Gypsum dewatering plant with centrifuge
Material: 25-6Mo, Duplex S.S, Flake glass lining, FRP, etc


Limestone Silo

Centrifuge

Gypsum Shed

Youngnam T/P Units 1&2

Unit Electic Capacity : 125MW & 200MW
Retrofit for Orimulsion fuel conversion for B-C & Orimulsion Combined Use
Retrofit of Wet Limestone-Gypsum FGD System for High Sulfur Orimulsion fuel (≈3%)
High SOx Removal Efficiency (≥99%) with DBA additive injection system
Blue Fume Removal System using Magnesium Injection at Boiler, A/H & GGH
Waste water treatment system of Evaporizing Concentration Type
Upstream SCR Arrangement and Honeycomb Type Catalyst using Anhydrous Ammonia Injection
High Corona induced discharge electrode of ESP with High current density
High Density granulating System for ASH Handling

Hsinta T/P Unit 3&4,Taiwan

- Wet Limestone Gypsum FGD for 500MW x 2 Units Coal Fired Boiler
- Providing Detail Engineering for Flue gas system, Steel structure & etc.
- High reliability Damper Supply
 Guillotine, Single & Double Louver
 Max. size : 7,600W x 7,600H
- Client : IHI, User : TPC

Daegu Dyeing Industrial Center

- Coal Fired Boiler (150Ton/hr)
- Packed Tower Scrubbing System with 90% SO₂ Removal Efficiency
- Waste Alkali Water used as Absorbent

Bridgestone Carbon Black Plant, Thailand

- •Wet Limestone Gypsum Process
- •Co-generation Boiler & Carbon Black Plant (211,500 Am^{*}/hr)
- •Providing Basic Engineering and Major Equipments
- •Using Powered Limestone and Centrifuge for Dewatering
- •High SO2 Removal Efficiency (≥95%)
- •Commercial grade of gypsum quality (≥92%)
- •Self-sustained Wet Stack Discharge without GGH
- •Client : Fujikasui Engineering Co

Tokai Carbon Product, Thailand

- Wet Limestone Gypsum Process using Powered Limestone and Centrifuge for Dewatering
- Co-generation Boiler
 & Carbon Black Plant (158,800 Am³/hr)
- Providing Basic Engineering and Major Equipments
- High SO₂ Removal Efficiency (\geq 90%)
- Commercial grade of gypsum quality (≥92%)
- Flue Gas By-Pass Reheating without GGH
- Client : Fujikasui Engineering Co

Jeju T/P (1 x 40MW)

NaOH Scrubbing Process
Diesel Power Station
Provided FGD & ESP

Samchonpo T/P (4 x 560MW)

Coal Firing / Wet Limestone Gypsum Process
91% SO2 Removal efficiency at 1.05%S Coal(Design base)
Turnkey FGD Project including Limestone & Gypsum Handling System, FGD Waste water treatment, Limestone slurry preparation with Wet Ball Mill Gypsum dewatering plant with H/C & VBF
Stack Inner flue basic design & modification
Material : C276, 4.5%Mo etc.

Hadong T/P #7&8 (2 x 500MW) KC Cottrell

LINIT#R

UNIT#

- •>93.5% Guaranteed SO2 Removal efficiency
- •Turnkey FGD Project including Limestone & Gypsum Handling System Limestone slurry preparation with Wet Ball Mill Gypsum dewatering plant with H/C & VBF
- •Material of Absorber : C276, 256Mo, etc
- •Commercial Operation Schedule
 - Unit #7 : Dec. 30, 2008, Unit #8 : Jun. 31, 2009

Hsinta T/P (2 x 500MW)

•Wet Limestone-Gypsum Process

•Upgrading of Exist FGD Supplied by GE (Including ESP & AHS)

 Absorber Slurry Recycle

Absorber Slurry Recycle Header Demolition

Prescrubber / Cooler Demolition

Gwangyang #1-4 Sinter Plnat

User / Client : POSCO

Dry FGD System, SBC(NaHCO₃)/RSC(Na₂CO₃) Injection with Bag Filter and Ash Extractor

Gas Flow : 1,350,000 Nm³/hr (wet) x 4 Units >90% SO₂ Removal efficiency (Guarantee > 80%) Turnkey Project including De-Dioxin & SCR, Duct Burner, GGH, etc Construction Period : 2005.5.12~2007.6.30 (26 months)

Visible Fume – Stack with FGD and without FGD

POSCO GWANGYANG #1-4 SINTER PLANT

THANK YOU! QUESTIONS?

KC Cottrell Co., Ltd. 160-1, Donggyo-dong, Mapo-gu, Seoul, Korea 121-817 Tel 82-2-3206-114 Fax 82-2-3206-100

www.kc-cottrell.com