Cooling Systems

Air Pollution Control

Process Heat Exchangers

Chimneys

HRSG & Waste Heat Boilers

- Hamon et Cie is a Belgium based global group specializing in pollution control, heat recovery and cooling technology and related manufacturing for the utility, petrochemical and heavy industries
- Hamon's core businesses in thermal and environmental systems have been in operation for >100 years.

Global operations

Cooling Systems

Air Pollution Control

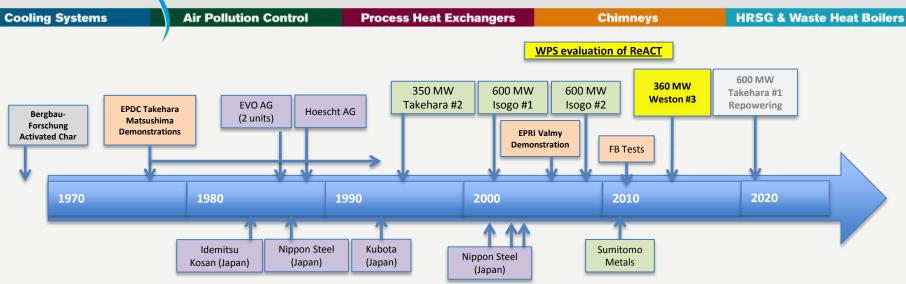
Process Heat Exchangers

Chimneys

HRSG & Waste Heat Boilers

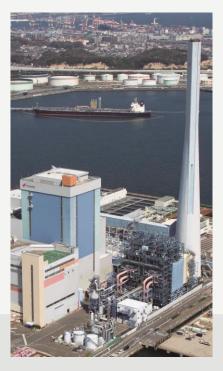
for a clean environment

- Hamon has operating companies in Europe, Asia, Africa, South America and the U.S.
- In Asia, Hamon has engineering offices in India and China, specialized manufacturing in China, and sales/project/service offices in Korea, China, Indonesia, Singapore, Australia, Malaysia, Thailand and Vietnam.



Regenerative Activated Coke Technology ReACTtm

Advanced Integrated Multi-Pollutant Control Technology


Isogo 600 MW Unit #2

Development of advanced multipollutant technology

- Bergbau-Forschung <1970s Activated Char Process
- EPDC(J-Power)/Mitsui/Sumitomo 1970s-1990s development
- Mitsui BF 1980 commercial projects in Europe & Japan
 - Coal utility and other industrial applications
- J-Power 2000s acquisition/implementation
 - 2 x 600 MW implementation at Isogo world's cleanest coal fired power
 - Planned for next repowering project at Takehara
- EPRI confirming demonstration tests at Valmy
- Hamon Research-Cottrell 2010 license from J-Power
 - U.S. utility fixed bed parametric tests at high performance
 - U.S. implementation at 360 MW (321 MW net) WPS/Weston Unit 3

Hamon Group ReACT multipollutant technology

Cooling Systems

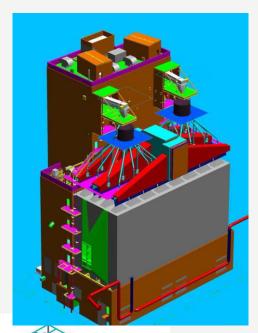
Air Pollution Control

Process Heat Exchangers

Chimneys

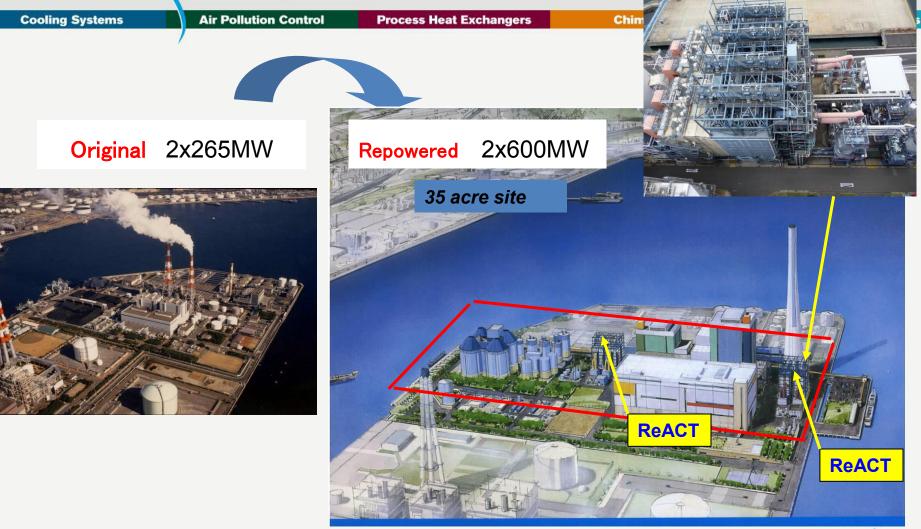
HRSG & Waste Heat Boilers

Fully dry process based on moving bed adsorption on activated coke

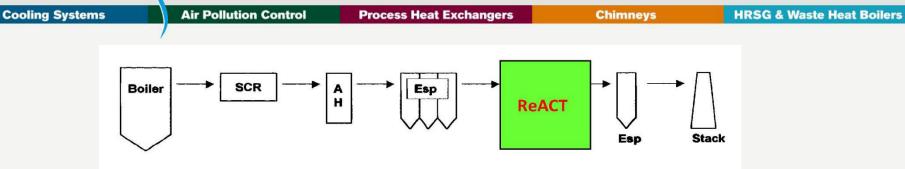

- No water evaporated into flue gas, (water usage at 1% of WFGD, DFGD)
- No sprays, no wet/dry interface, no moist material fouling, no slurry preparation
- No increase in water vapor plume, no acid plume
- SO2 and acid gases
 - >>95% SO2 control
 - Near zero SO3 emission
 - Carbon steel flue gas path including stack
- NOx control design options
 - Co-benefit NOx control at 20-40%
 - Enhanced NOx control to 40-60% with NH3 dosed AC regeneration
 - Higher NOx control to 80% available with two-stage adsorption

Hg control with waste volume minimization

- 95% control of both elemental and oxidized forms as co-benefit
- Hg waste volume minimized (<0.1 ton/MW/year)

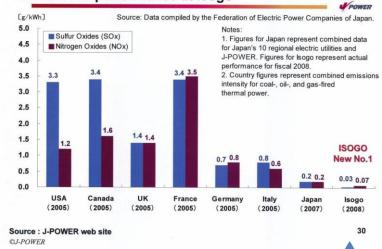

Regenerative system for activated coke adsorbent

- Reduced reagent and disposal material volume
- Sulfur rich gases are feedstock to production of byproduct sulfuric acid
- Operational through start-up and shutdown
 - Flue gas is treated over 100% of the boiler operation
- Well suited as retrofit technology
 - Installation downstream reduces station outage requirements
 - Dry operation allows use of existing stack/liners



Isogo Power Station

(2002 and 2009 start-ups) J-Power facility among world's lowest emissions power plants



Isogo flue gas path

- Ultrasupercritical boiler fired with low sulfur coal
- SCR for primary NOx control
- Air Heater
- Cold side ESP for primary particulate control
- ReACT system
 - primary SO2 control
 - co-benefit Hg reduction
 - co-benefit NOx reduction
- Polishing ESP
 - to meet 5 mg/Nm3 permit
- Stack
 - Negligible acid gases, no plume

Emissions performance at Isogo

Lowest emissions – worldwide for SO2 and NOx – Isogo #1 and Isogo #2 are the world's cleanest coal fired power plants

Isogo Performance

Cooling Systems

Hamon

Air Pollution Control

Group

Process Heat Exchangers

Chimneys

HRSG & Waste Heat Boilers

The emissions results at J-Power's Isogo power station have been reported in comparison with their permit requirements as follows:

Results at Isogo #2	Permit	Inlet to ReACT	Typical Stack Emissions	Control Level indicated
SO2	10 ppm	~410 ppm	~ 1 ppm	>>98% in ReACT
NOx	13 ppm	~20 ppm (after SCR)	~7 ppm	~90% in the SCR ~50% ReACT co-benefit
Particulate	5 mg/Nm3	< 100 mg/Nm3	<3 mg/Nm3	>98% in the primary ESP
	~0.004 lb/MMBTU	<0.1 lb/MMBTU (downstream of	<0.002 lb/MMBTU (downstream of	~97% in the polishing ESP
		primary ESP)	secondary ESP)	>>99.9% overall
Mercury			<2.5 ug/Nm3 <0.2 lb/TBTU	>>90%

Takehara #2 Performance

Cooling Systems

Hamon

Air Pollution Control

Group

Process Heat Exchangers

Chimneys

HRSG & Waste Heat Boilers

J-Power installed ReACT on Takehara in 1995 (20 years operation)

- 380MW Unit #2 1,163,000 Nm3/hr @ 140C
- Takehara is an AFBC with limestone
- J-PowerPower reports typical operation since 1995

Results at Isogo #2		Inlet to ReACT	Typical Stack Emissions	Control Level indicated
SO2	Limestone AFBC is primary SO2 control	~50-100 ppm after AFBC	ReACT removes 99% of 50 ppm	~70-80% in FBC Overall 99+% reduction SRG is returned to boiler after 25% bleed in small scrubber
NOx	ReACT is primary NOx control	~250 ppm after AFBC	<50 ppm	~ 80% in ReACT as primary NOx control
Particulate	AFBC with ESP	~200 mg/Nm3	<30 mg/Nm3	ReACT accepts modest particulate load and effects some reduction

Takehara #2 Performance

Cooling Systems

Hamon

Air Pollution Control

Group

Process Heat Exchangers

Chimneys

HRSG & Waste Heat Boilers

J-Power installed ReACT on Takehara in 1995 (20 years operation)

- 380MW Unit #2 1,163,000 Nm3/hr @ 140C
- Takehara is an AFBC with limestone
- J-PowerPower reports typical operation since 1995

Results at Isogo #2		Inlet to ReACT	Typical Stack Emissions	Control Level indicated
SO2	Limestone AFBC is primary SO2 control	~50 ppm after AFBC	<5 ppm	>>90% in ReACT Overall 99% reduction
NOx	ReACT is primary NOx control	~250 ppm after AFBC	<50 ppm	~ 80% in ReACT as primary NOx control
Particulate	AFBC with ESP	~200 mg/Nm3	<30 mg/Nm3	ReACT accepts modest particulate load and effects some reduction

Hamon Group Confirming EPRI demonstration

Cooling Systems

Air Pollution Control

Process Heat Exchangers

Chimneys

HRSG & Waste Heat Boilers

Performance ranges reported by EPRI (MEGA Symposium 2008) for ReACT demonstration program conducted by EPRI at Valmy Station.

EPRI test at Valmy	Range of Inlet conditions	ReACT tested performance	Note
SO2	500 to 1400 ppm	97.6 to 99.96%	Flue gas space velocity and activated coke residence time parameters were varied in typical ranges to demonstrate performance
NOx	100 to 200 ppm	25.7 to 48.35%	co-benefit NOx only
Particulate	0.02 to 0.03 lb/MMBTU	0.007 to 0.01 lb/MMBTU	<u>Without</u> downstream ESP
Mercury	0.02 to 0.21 ug/m3	97.1 to 99.6%	High Hg % removal was shown at low inlet Hg levels

Cooling Systems

Hamon

Group

HRSG & Waste Heat Boilers

Wisconsin Public Service – due diligence on ReACT

Detail review of ReACT operating characteristics for Weston 3

 ReACT system is specifically configured to meet compliance and flexibility requirements for range of Weston 3 operating conditions

Comparison with other available control technology – DFGD, WFGD, ACI, DSI, SNCR, SCR

WPS notes to the Wisconsin PSC that ReACT operating characteristics for Weston 3

- Provides performance for SO2, SO3 and Hg that were equal or higher WFGD and DFGD/ACI
- Provides additional NOx control not available from WFGD or DFGD
- Provides flexible NOx control at levels sufficient to avoid added cost of SCR
- Operational during start up and shutdown periods
- Avoided water consumption and wastewater discharge issues
- Avoided solid waste disposal issues
- Preserved flyash sales
- Provided a positive revenue stream from marketable by product sulfuric acid

