Flexible, reliable and efficient power plant technology – GE’s Europe Experience

December 16, 2016

Confidential. Not to be copied, distributed, or reproduced without prior approval.

Bill Miller, Henrik Nielsen and Chinmoy Mohanty
© 2016, General Electric Company.
GE Proprietary Information - The information contained in this document is General Electric Company (GE) proprietary information. It is the property of GE and shall not be used, disclosed to others or reproduced without the express written consent of GE, including, but without limitation, in the creation, manufacture, development, or derivation of any repairs, modifications, spare parts, or configuration changes or to obtain government or regulatory approval to do so, if consent is given for reproduction in whole or in part, this notice and the notice set forth on each page of this document shall appear in any such reproduction in whole or in part. The information contained in this document may also be controlled by the US export control laws. Unauthorized export or re-export is prohibited.
Power Services delivers a more balanced portfolio across total plant capabilities.

- ~5,900 gas turbines
- ~1,600 aeroderivative gas turbines
- ~9,900 generators
- ~900 heat recovery steam generators

- ~1,600 GW: ~1.5 of installed capacity enough to power 8 million homes
- ~28,000 power generation assets globally ... the world's largest installed base

- ~2,000 boilers
- ~2,600 utility steam turbines
- ~3,400 industrial steam turbines
- ~3,000 air quality control systems
Impact of renewable power on operation profiles
Demand on Flexibilty – Energy Production Germany

January 2016

July 2016

Demand of flexible operation will increase ~ 20 % of volatile power production
FLEX SUITE™ Steam

Offering for Steam Plants

<table>
<thead>
<tr>
<th>FLEX SUITE™ for Steam Power Plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>START</td>
</tr>
<tr>
<td>Fast, reliable start-up</td>
</tr>
<tr>
<td>Cost optimised start-up</td>
</tr>
<tr>
<td>PERFORM</td>
</tr>
<tr>
<td>Power and Efficiency Increase</td>
</tr>
<tr>
<td>Peak load</td>
</tr>
<tr>
<td>Controlled environmental footprint</td>
</tr>
<tr>
<td>RESPOND</td>
</tr>
<tr>
<td>Frequency response</td>
</tr>
<tr>
<td>Increased ramp rates</td>
</tr>
<tr>
<td>RESERVE</td>
</tr>
<tr>
<td>Improved part load efficiency</td>
</tr>
<tr>
<td>Low load operation</td>
</tr>
<tr>
<td>Hot standby</td>
</tr>
</tbody>
</table>

| **CARE** |
| Maintenance concepts |
| - Lifetime optimised operation |
| - Flexible maintenance |
| - Conservation and preservation |
| Condition and lifetime monitoring |
| - Remote component monitoring |
| - Lifetime assessments |
| - Site inspection services and condition analysis |
| Commercial solutions |
| - Flexible service contracts |

Confidential. Not to be copied, distributed, or reproduced without prior approval.
FLEET360* STEAM PLANT SERVICES SOLUTIONS – FLEXIBILITY

DIGITAL SOLUTIONS
- Steam Plant Asset Performance Management
- Low Load Optimization
- Part Load Optimization
- Enhanced Fast Ramp/Startup/Response
- BoilerOpt and Digital Boiler +
- Digital Twin

STEAM TURBINE
- Blade Vibration Monitoring
- Valves and Actuator Monitoring
- Enhanced ST Rotor Stress Control

BOILER
- Flame Scanners
- Plasma Burner
- Burner Upgrade
- Smart Mill
- Stability Monitor
- Low Load Boiler Package
- Auto Tune
- Air Preheater Upgrade

*Trademark of General Electric Company.

<table>
<thead>
<tr>
<th>Min. Load</th>
<th>Start-up</th>
<th>Load Gradient</th>
<th>Heat Rate</th>
<th>Availability</th>
<th>Nox Emission</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 → 10%</td>
<td>3 → 1.5 h (hot)</td>
<td>2 → 6%/min</td>
<td>-2%</td>
<td>+2%</td>
<td>-20%</td>
</tr>
<tr>
<td></td>
<td>10 → 4 h (cold)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GE Flexible Steam Turbine Features

- Scroll Inlet with RADAX Stage
- Welded Rotor
- Advanced 3D Blade Design
- Shrink Ring
- Instrumented for Modern ST Control
- Single Bearing Design
- Broad Last Stage Blade Profile
Boiler Flexibility Topics

Practical Examples

- Optimisation / Minor works / Low Load
- Minor Intervention / Efficiency / Upgrade Envelope
- Fuel Change Topic
- Fast Ramp / Upgrade
- Major Retrofit
Optimisation – Conventional Power Plants
Load Range Extension for Bituminous Coal

Min Load Reduction due to Process and Equipment Optimisation

- 4-Mills in Operation
- 3-Mills in Operation
- 2-Mills in Operation
- 1-Mill in Operation

Reduced Min Load

Usual Load Range

Life Steam Production [%]

In cases of extended firing envelope operation, the furnace safety system must be revalidated for safe operation according to the NFPA 85 code.
Small Project
800 MW Bituminous coal unit

- 800 MW hard coal unit
- GE Tower boiler, once through
- Tangential firing
- GE steam turbine
- Unit with district heating (240 MW) and process steam extraction
- Design Low load operation: 30%
Load Range & Efficiency Improvement
Minor Intervention

- 2 x 500 MWe, Tilting Tangential Burners. GE OEM.
- Coal Preparation by 6 x Vertical Spindle GE pulverizers
- Fired on high ash Bituminous coal
- Problem, high unburnt loss, minimum load ~50%
- Minor modification to burners to target low load and UBC reduction.
Load Range & Efficiency Improvement

Minor Intervention

<table>
<thead>
<tr>
<th>UBC Performance (lower = better)</th>
<th>Lowest Load with coal only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual pre-conversion</td>
<td>8.6%</td>
</tr>
<tr>
<td>Predicted post conversion</td>
<td>6.8%</td>
</tr>
<tr>
<td>Actual post conversion</td>
<td>3.8%</td>
</tr>
</tbody>
</table>

Performance Values:
- **Actual pre-conversion:** 8.6% (50%)
- **Predicted post conversion:** 6.8% (25%)
- **Actual post conversion:** 3.8% (25%)
Change of Fuel – Fuel Flexibility

- Original Domestic Fuel
- Domestic Fuel, Enlarged Range
- Historical Range of Bituminous Fuel

Ash [%] vs. Moisture [%]
Fuel and load Flexibility - Bituminous Coal

- Faster Start-Up
- Low Load Operation
- Fuel Range Extension
- Fast Load Changes
- Fuel Range Extension
- Fuel Range Extension

Source: REBURNFLAM® Kanal-/Flächenbrenner; Pillard Feuerungen GmbH
Source: ROTAMILL GmbH
Indirect Firing System
Reduction of dynamic Response Delay

Fast Load Changes

Reduction of dynamic Response Delay (Secondary Control)

- Grinding Process causes Delays due to Storage Capacity of Mill
- Indirect Firing separation of Grinding and Storage
- Significant Reduction of System Response Time

Graph:
- **Indirect Firing:** Load Ramps up to 10 % / min
- **Conventional Firing:** Load Ramps up to 2 % - 5 % / min
Optimisation of Conventional Firing Option for Dynamic Response Improvement

| Mill → Burner | Mill → PF Separator / Silo → Burner |

Direct Firing System (Conventional) (Partly) Indirect Firing System
Optimisation of Conventional Firing
Start up with – Dried Coal – eliminates support energy
Niederaußem K: 8 x 90 MW$_{th}$

• Start-up/Support Firing

• Operation since 2003

Dried Lignite Burner

Dried Lignite Storage Silo
Large Retrofit Project

Superheaters & Reheaters
- Performance Adjustments
- Material Upgrades
- Cleanability

Economizer
- Performance Improvements
- Cleanability
- Erosion Protection

Ducts & exp. joints
- Material Upgrades
- Repairs

Air heater
- High Efficiency Heating Elements
- Air Leakage reduction
- Cleanability

Waterwalls
- Cleanability
- New Burner openings

Overfire air (OFA)
- Two stage OFA

Burners
- Low NOx burners

Bottom ash handling
- Modified After Burning Grate

Coal pulverizers
- Improved classifiers
- Advanced wear parts

<table>
<thead>
<tr>
<th></th>
<th>before</th>
<th>after</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>>400</td>
<td><200 mg/Nm³</td>
</tr>
<tr>
<td>Power</td>
<td>370</td>
<td>394 MW</td>
</tr>
<tr>
<td>Cycle Eff</td>
<td>38%</td>
<td>41.30%</td>
</tr>
<tr>
<td>Feed temp</td>
<td>255</td>
<td>275 °C</td>
</tr>
<tr>
<td>Live Steam</td>
<td>540</td>
<td>570 °C</td>
</tr>
</tbody>
</table>
Summary

<table>
<thead>
<tr>
<th></th>
<th>State of the Art</th>
<th>Further Development (Newly built and existing Plants)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time for Start-up</td>
<td>2 - 6 Hours Depending on Startup Conditions</td>
<td>1 - 4 Hours Depending on Startup Conditions</td>
</tr>
<tr>
<td>Minimum Load</td>
<td>Newly built Plants: 25 %</td>
<td>Conventional Firing 15 - 20 %</td>
</tr>
<tr>
<td>Bituminous Coal</td>
<td>Existing Plants: 40 %</td>
<td>Indirect Firing 10 % - 15 %</td>
</tr>
<tr>
<td>Load Ramps</td>
<td>ca. 2 - 5 % / min</td>
<td>Up to 10 % / min</td>
</tr>
<tr>
<td>Biomass</td>
<td>10 % CoCombustion</td>
<td>100 % Combustion</td>
</tr>
</tbody>
</table>

Confidential. Not to be copied, distributed, or reproduced without prior approval.