COAL BLENDING CHALLENGES

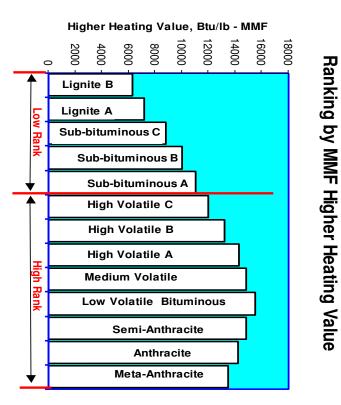
PUNARBASU BHATTACHARYA

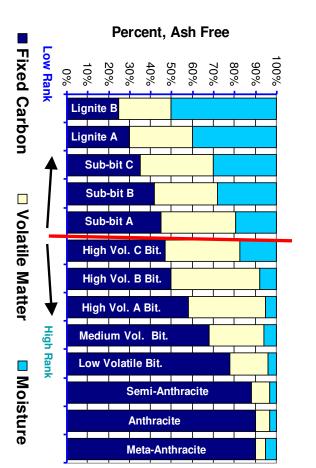
COAL BLENDING NEED ?

The indigenous coal supply to the power sector will be mostly from lower grade coals having high ash content. The power sector shall have to depend on significant quantity of imported coal in the future as the demand cannot be met from indigenous supply.

For blending Homogeneity of Coal Property is always preferred but unfortunately very often the user has no control on the choice of coals which are decided by other factors such as availability and cost.

Compatibility of the imported coal with Indian coal for their non additive properties like grindability, reactivity and burning behavior in a utility furnace is of prime concern in coal blending for efficient power generation.


BLENDING ISSUES



It is widely acknowledged that blending of coals should be done judiciously taking into consideration the properties of the individual blend components Since coal is not homogenous, its quality varies and depends on the content of several ingredient.

In disruptive coal market scenario it is important that utilities adopt a proper strategy of coal procurement and coal use to run their plant efficiently with higher degree of reliability while remaining competitive.

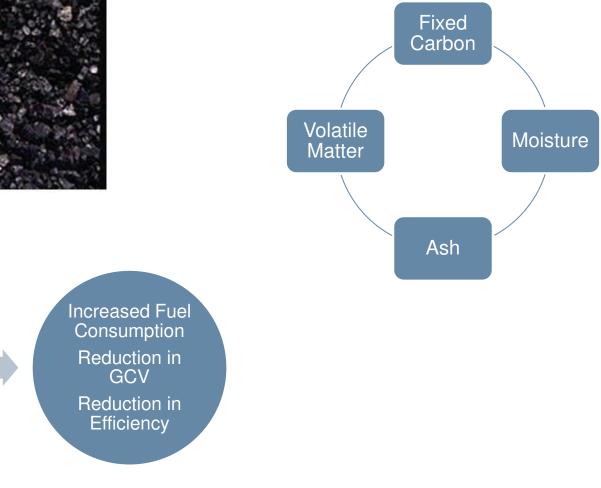
Most of the plants in India are normally designed with limited fuel flexibility- are not blend ready design. They may require minor or major modification depending on design and operation history to accommodate wider fuel property variation.

Proximate Analysis Comparison

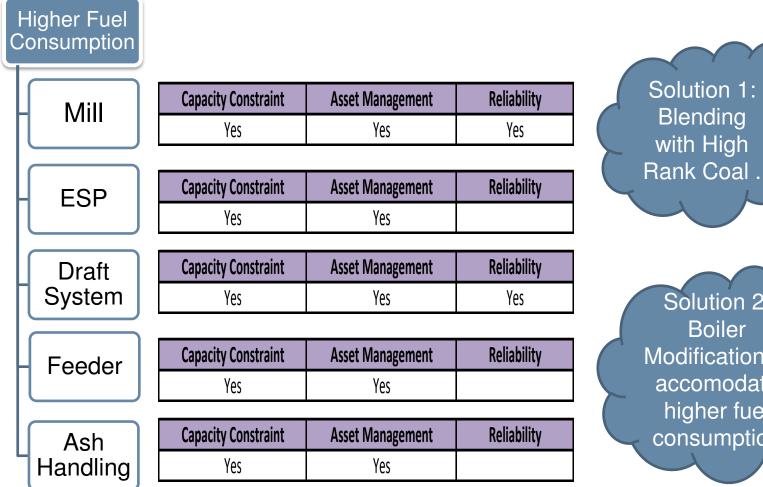
COAL PROPERTY IMPACT ON BOILER

	⇒	YGP Index	-	Feeder, Mill, Fuel Pipe, Burner,
	→	GCV	→	Generation ,Furnace & Other Heat Transfer Surface ,Ducting and Draft System, ESP
	→	Ash	→	ID Duct, Convective Heating Surface ,Airheater, Burner, ESP
Coal Parameters	→	VM	\rightarrow	Mill ,Burner
	→	Sulpher	\rightarrow	FGD,ESP,Airheater
	→	Moisture (High)	→	Bunker, Feeder, Mill, Fuel Pipe, Burner, Draft System
	→	Ash Resistivity	\rightarrow	ESP
	\rightarrow	HGI	→	Mill

IMPACT OF COAL PROPERTY DEGRADATION

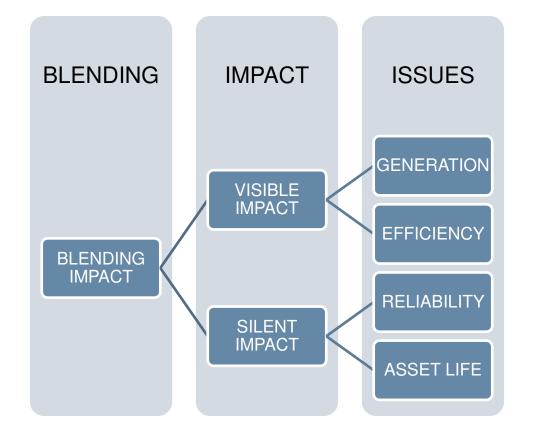


Increase of Ash


Increase of Moisture

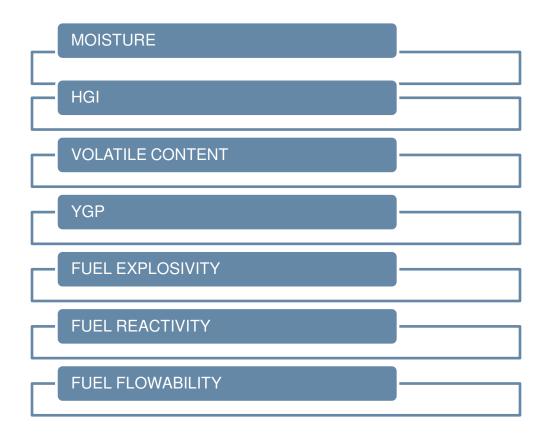
COAL PROXIMATE ANALYSIS

IMPACT OF COAL PROPERTY DEGRADATION



Solution 2: Boiler Modification to accomodate higher fuel consumption

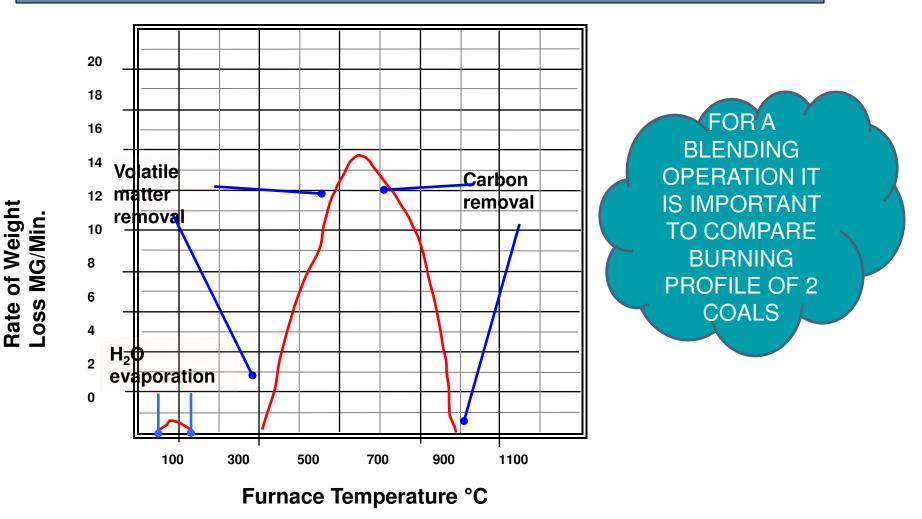
BLENDING IMPACT



COMPONENT LEVEL ANALYSIS -MILL

MILL PERFORMANCE- FUEL DEPENDENCY

COMPONENT LEVEL ANALYSIS -MILL

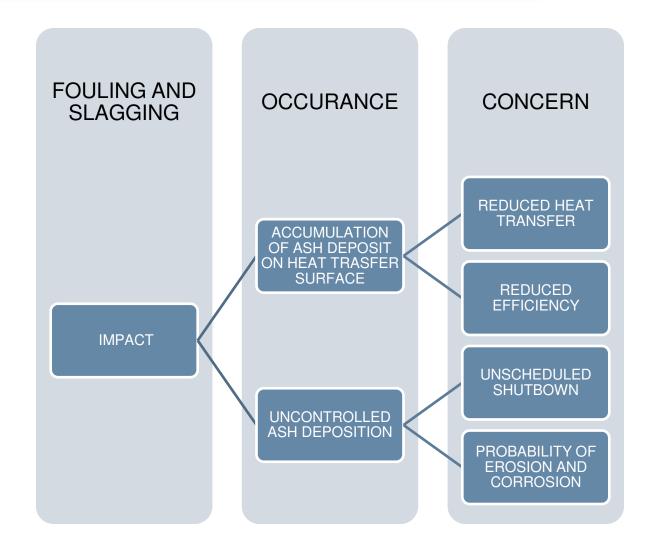


	DETORIORATION OF MILL OUTPUT	GENERATION CONSTRAINT	SPECIFIC ISSUES	FORCED OUTAGE	ASSET MANAGEMENT
MOISTURE CONTENT		YES(PROBABILITY EXISTS)	DESIGN CHECK REQUIRED TO ENSURE SUFFICIENT HEAT AVAILABLE AT MILL INLET FOR DRYING		
HGI	YES	YES(PROBABILITY EXISTS)			
YGP	YES				LESS LIFE OF COMPONENT ADDITIONAL SPARE CONSUMPTION
EXPLOSIVITY			MILL OUTLET TEMPERATURE TO BE CONTROLLED	YES	PROBABILITY OF COMPONENT DAMAGE
VM/REACITIVITY			MILL OUTLET TEMPERATURE TO BE CONTROLLED CHECKING REQUIRED RESPECT TO OTHER COAL	YES	

BURNING PROFILE

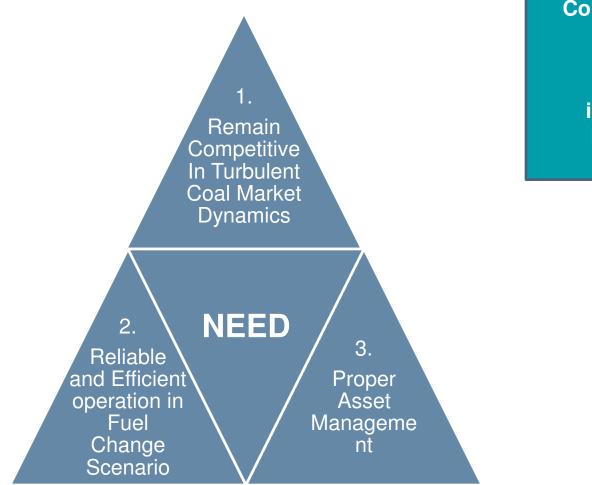
TGA CURVE function of (FC,VM,MOISTURE,ASH)

SLAGGING AND FOULING ISSUE

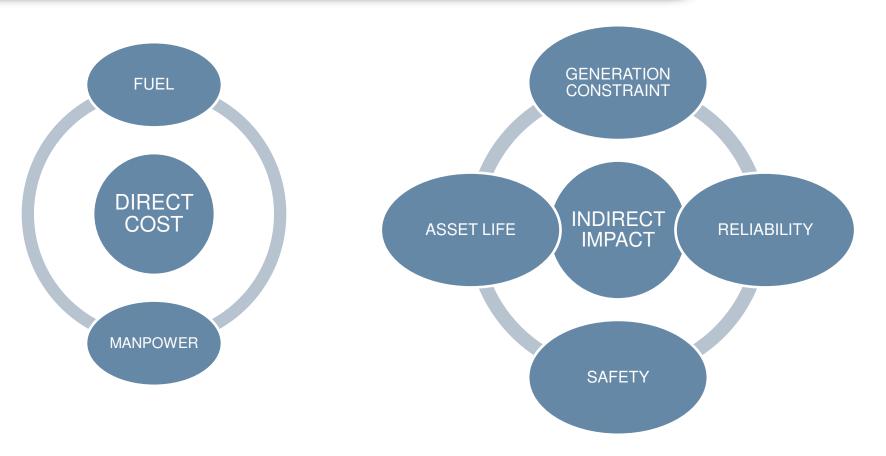

COAL HAVING HIGHER HEAT VALUE DOESN'T NECESSIRILY QUALIFY IT WIL HAVE SUPERIOR CHARACTERISTICS IN ALL RESPECT. SLAGGING AND FOULING ARE IMPORTANT ASPECTS TO BE TAKEN IN CONSIDERATION FOR FUEL CHANGE STUDY AND BLENDING OPERATION.

SLAGGING, FOULING, ERO-SION HAS SIGNIFICANT IMPACT ON BOILER OPERATION AND ASSET LIFE.

FOULING AND SLAGGING ARE DEPENDENT ON COMPOSITE ASH COMPOSITION


SLAGGING AND FOULING ISSUE

NEED ANALYSIS


steag

Considering present Scenario Coal Blending / Fuel switches are inevitable during the lifecycle of a Power Station.

BLENDING ANALYSIS FROM OVERALL PERSPECTIVE

BLENDING ANALYSIS FROM OVERALL PERSPECTIVE

GENERATION CONSTRAINT

DESCRIPTION	PROBABILITY	PROBABLE	FINANCIAL
		DURATION	IMPACT
EQUIPMENT DESIGN			
CONSTRAINT			
MOISTURE PICK UP AT			
RAINY SEASON			
OTHER			

RELIABILITY

DESCRIPTION	PROBABILITY	EXPECTED SHUTDOWN	FINANCIAL IMPACT
TUBE FAILURE			
FAN STALLING			
FLAME FAILURE			
OTHER			

BLENDING ANALYSIS FROM OVERALL PERSPECTIVE

ASSET LIFE

DESCRIPTION	PROBABILITY	POSSIBLE	FINANCIAL
		SOLUTION	IMPACT
EQUIPMENT WEAR			
AND TEAR			
CORROSION/EROSION			
OTHER			

SAFETY

DESCRIPTION	PROBABILITY	EXPECTED SHUTDOWN	FINANCIAL IMPACT
FIRE HAZARD			
EXPLOSION			
OTHER SAFETY ISSUES			

BLENDING- DECISION TREE

	FUEL COMBINATION			
Impact	1	2	3	4
Direct Cost				
Fuel + Labour + Consumable				
Indirect Impact				
Revenue Loss due to				
Constrained Generation				
Financial Impact due to				
Reliability Issue				
Financial Impact on account of				
Asset Life				
Financial Impact on account of				
Safety Issue				
Total Direct cost + Probable				
Indirect Impact				

ABOVE DECISION TREE MAY HELP UTILITIES IN FUEL MANAGEMENT AND FUEL PURCHASE POLICY.