

Advanced Flue Gas Cleaning and mercury removal technologies of ANDRITZ AG

Dr. Klaus Baernthaler

CEA / EEC Seminar – 22nd of April 2016, New Delhi

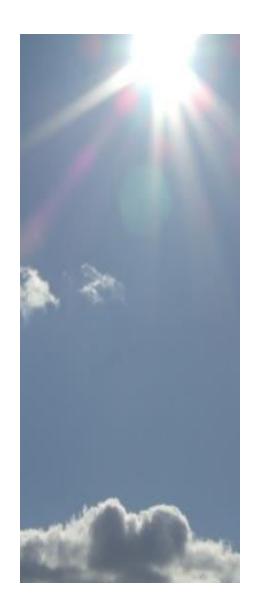
The ANDRITZ GROUP

Overview

ANDRITZ is a globally leading supplier of plants, equipment, and services for hydropower stations, the pulp and paper industry, the power industry, the metal-working and steel industries, and solid/liquid separation in the municipal and industrial sectors

Headquarters: Graz, Austria

KEY FINANCIAL FIGURES 2015


Global presence: over 250 production sites and service/sales companies worldwide

	Unit*	2015
Order intake	MEUR	6,017.7
Order backlog (as of end of period)	MEUR	7,324.2
Sales	MEUR	6,377.2
EBITA	MEUR	429.0
Net InCome	MEUR	270.4
Employees (as of end of period; without apprentices)	-	24,508

ANDRITZ Air Pollution Control

Innovative environmental engineering

- Leading APC company with wide range of technologies
- Over 200 references worldwide with our wet FGD technology (> 120.000 MWel)
- Over 100 references for our SCR technology
- Over 50 references with our semi dry Turbo CDS technology
- More than 30 years of experience and competence
- Product portfolio varies from service provider up to general contractor for turnkey flue gas cleaning plants

Emission Requirements in India

for removal of SOx, dust, Hg, heavy metals, NOx, etc.

Plants installed	d before 31 st December, 2003				
SPM	100mg/Nm3				
SO2	600 mg/Nm3	Capacity <500 MW			
	200 mg/Nm3	Capacity ≥ 500			
NOx	600mg/Nm3				
mercury	0.03mg/Mn3	Capacity ≥ 500			
Plants installed from1 st Jan 2004 to 31 st Dec., 2016					
SPM	50mg/Nm3				
SO2	600 mg/Nm3	Capacity <500 MW			
	200 mg/Nm3	Capacity ≥ 500			
NOx	300mg/Nm3				
mercury	0.03mg/Nm3	Capacity ≥ 500			
Plants installed after 1 st January, 2017					
SPM	30mg/Nm3				
SO2	100 mg/Nm3				
NOx	100mg/Nm3				
mercury	0.03mg/Mn3				

- Indian Coal: moderate SO₂ conc. of 1000 to 2500 mg/m³(std.;dry; 6%O2) from coal with up 0,6% S; high ash conc. (up to 45%)
- FGD technologies like Wet Limestone FGD, Seawater FGD or semi dry FGDs (CDS)
- SPM: emission limit could be challenging depending on dust inlet at FGD → FGDplus improves dust removal
- Main issue for SCR DENOX is high ash concentration
- Mercury emission mostly will not exceeded limit; low Hg content in coal; 0,1 – 0,4 mg/kg Hg ~ 13 – 50 mg/m³ (std., dry)

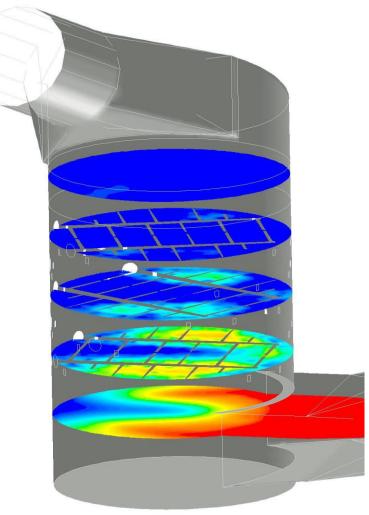
Complete product range of Air Pollution Control

for removal of SOx, dust, Hg, heavy metals, NOx, etc.

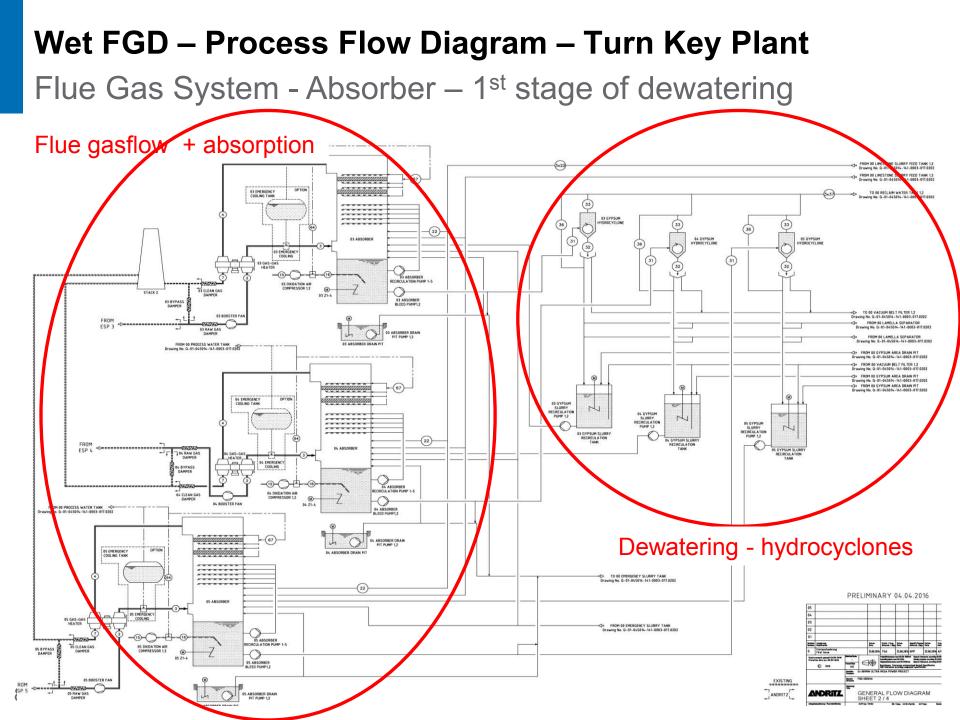
	Wet method	Dry method	DeNOx
Туре			
Power stations	 Wet Limestone FGD FGDplus Mercury Removal Seawater FGD CO₂ absorption 	 Dry sorption Turbo-CDS / TurboSorp Mercury removal Dust removal 	 SCR (high-dust application) SCR for combined cycle power plants (CCPP)
Industry incl. EfW and biomass	 Wet FGC (calcium and NaOH based) Multistage scrubber Combined systems 	Dry sorptionTurboSorp	 SCR (low-dust / clean gas application)

Wet limestone flue gas desulphurization by ANDRITZ

Wet limestone flue gas desulphurization (FGD)

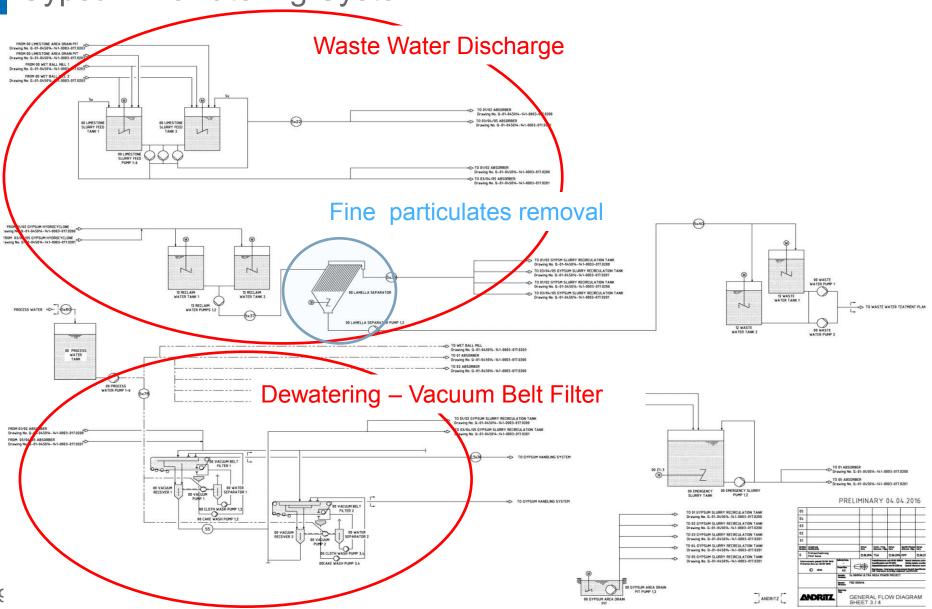

Technology - Overview

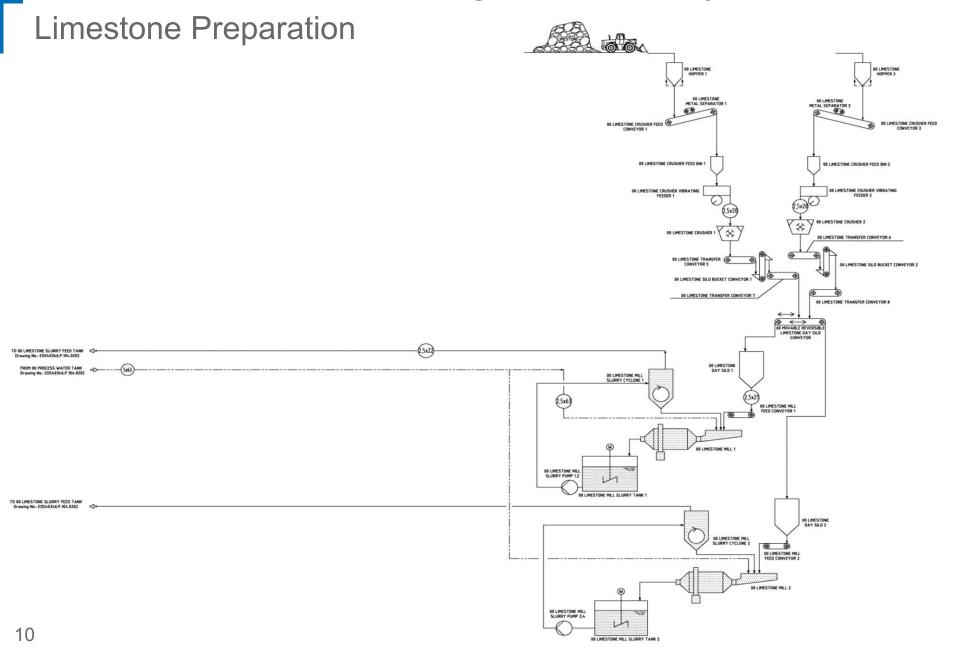
Process characteristics / Advantages


- Open spray tower optimized by advanced CFD tools
- Using CFD Modelling for optimizing the absorption
- FGDplus to improve SO2 and dust removal efficiency and realize lowest emission level
- Removing of acid gaseous pollutants (SO₂, HCl, HF)
- Limestone as available and cheap absorbent
- Producing marketable gypsum for cement industry or wallboard
- Reaching SO₂ removal > 99%
- Most used technology worldwide

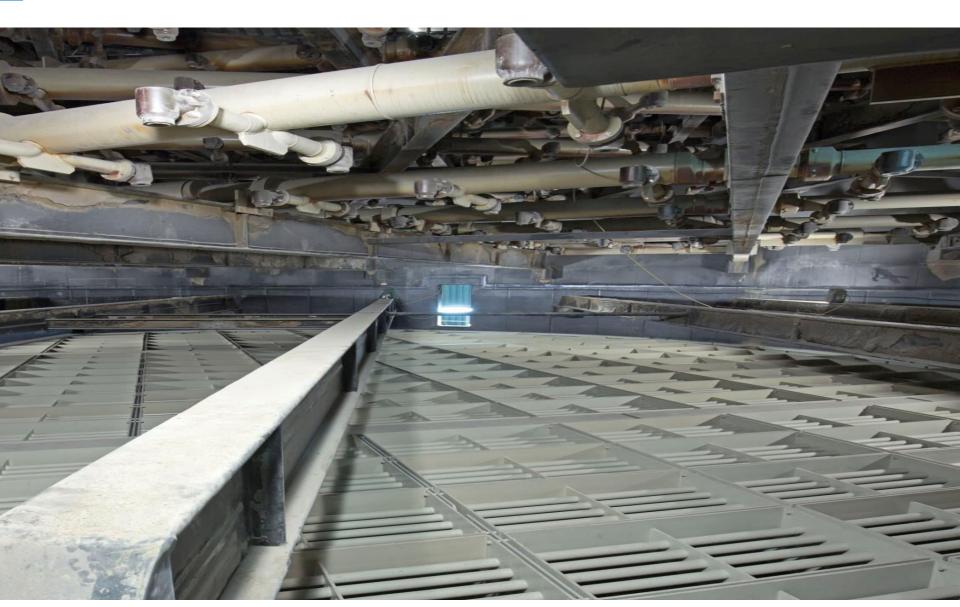
Our Experience:

- Flue gas volume
- up to 4.8 Mio. m³/h (std,wet)
- SO₂ (references)
- SO2 (test plant)
- SO2 (clean gas)
- up to $15,000 \text{ mg/m}^3$ (std,dry) up to $30,000 \text{ mg/m}^3$ (std,dry)
 - 50 200 mg/m³ (std,dry)





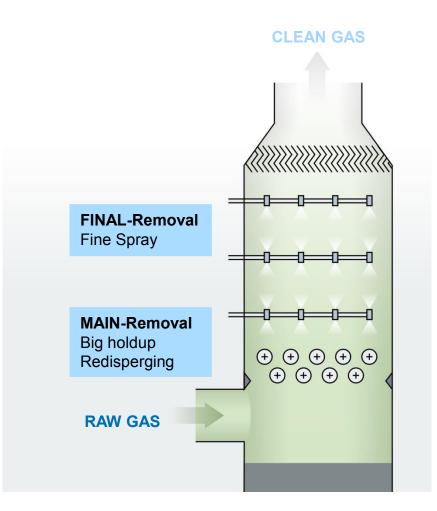
Wet FGD – Process Flow Diagram – Turn Key Plant


Gypsum Dewatering System

Wet FGD – Process Flow Diagram – Turn Key Plant

Optimizing Absorber STEP 2 - FGDplus Example FGD Niederaußem unit G – 660 MWe

Optimizing Absorber STEP 2 - FGDplus


Upgrade of existing absorber and new installations

Process characteristics / Advantages

- Scrubber with adapted mass-transfer regime in order to increase SO2 removal
- Optimized combination of high removal and fine removal within the absorption zone
- Maximize dust, aerosol and HM removal
- Decrease of invest costs
 - Number of spray banks
 - Absorber height (sump, absorption zone)
 - Pump size
- Decrease of operation costs
 - Pressure at nozzles for direct feeding
 - Decrease of liquid to gas ratio

Capacity:

- Flue gas volume up to 4.8 Mio. m³/h (std,wet)
- SO₂ concentration up to 30,000 mg/m³ (std,dry)

