Cost Implication

FGD	Limestone Gypsum	Sea Water
By product	Gypsum	Used sea water
Use of by product	Saleable product	Disposed in to sea
Capital cost	High	Low
O&M cost	Medium	Low

BHEL readiness to meet the current requirement

- BHEL is having a dedicated engineering group for FGD
- BHEL has successfully commissioned sea water based FGD at Trombay unit#8 250 MW of MHI Technology
- BHEL has supplied Wet Limestone based FGD to NTPC Bongaigaon 3X250MW of Ducon Technology.

Layout of Trombay FGD

Layout of Bongaigaon FGD

Technology Tie-up with MHPS

- BHEL has signed a TCA with M/s MHPS for Wet FGD technology in April 2013 and it is valid up to 2028.
- MHPS trained BHEL Engineers in Wet FGD technology (Limestone / Sea water).
- BHEL and MHPS jointly designed the Wet Limestone FGD system for NTPC Vindhyachal 1x500 MW Project and offered.
- BHEL designed Wet Limestone FGD by its own and NOA received for Maitree 2X660 MW project at Bangladesh

DCFS Type Absorber

Single Tower DCFS

Twin Tower DCFS

Features of DCFS

Spray System Load Adjustment

Clean Gas

Liquid

Energy Saving for Partial Load Liquid column height is adjusted by changing the number of recirculation pumps according to boiler load, thus for energy saving.

Comparison with conventional Spray Tower

Internal condition of DCFS after operation

No special maintenance is required, because scaling will not occur due to Mitsubishi's unique absorber design without internal elements, except for single-stage nozzles of the DCFS system.

Kashima-minami (136MW)

Operation start : July '93 Photographed : May '99 (6th Periodical Inspection)

Misumi (1,000MW)

Operation start : Dec. '97 Photographed : May '99 (1st Periodical Inspection)

Mikuni (250MW)

Operation start : Mar. '97 Photographed : Mar. '99 (1st Periodical Inspection)

Absorber Mounted Type

Independent Type

Absorber-mounted Type

Absorber-mounted Type fit even small space

Jet air sparger (JAS)

Assured Regulations for Emissions, By-Products and Discharge

- (1) Outlet SO₂ concentration / Desulfurization ratio
- (2) Outlet dust concentration
- (3) By-product Gypsum Quality

-Purity : 95% for gypsum wall board, 90% for cement additives -Moisture content <10%

- (4) Outlet Flue Gas Temperature
- (5) Wastewater Quantity / Quality
 -Waste water quantity
 -Quality : pH, SS, COD, F⁻, Cl⁻, etc....
- (6) Utility Consumptions
 - -Less Electric power, Limestone, Process water
 - -No other additive required

Thank You