Water Quality for Supercritical Plants

Objectives and other details of modules

Duration – 75 minutes Training aids

Power point Presentations

Objective

At the end of the session participants will be able to:

- Explain metallurgical restriction and requirement in supercritical boilers
- Develop capability to take action to maintain chemical parameters
- List out chemical parameters condensate limits, feed water limits and main steam limits
- Illustrate the process of cycling online chemical instrumentation
- Indicate water chemistry influence on boiler tube failure in supercritical units
- Introduce operators' best practices relating to water chemistry for supercritical units

What is Supercritical

- As the fluid pressure increases, Latent Heat reduces.
- At critical points it becomes zero
- In physical terms at this pressure water transformers to steam spontaneously
- Supercritical Parameters:
 - Steam Pressure > 221.2 BAR
 - Steam Temperature > 374.15°C

Metallurgical restrictions and requirements

Do not allow for the use of any copper or copper alloys in feed

water cycle.

Copper and copper alloy condensers are acceptable

□ 100% full flow deep bed condensate polishing with external

regeneration is required

- □ Cycle chemistry should be oxygenated feedwater treatment.
- Makeup water plant should be capable of producing water with a conductivity of less than 0.1 mmho, with chlorides, sulfates and sodium less than 3 ppb and silica less than 10 ppb.

Chemical Parameters

Action Levels

Action Level 1

 Parameter is to be returned to normal values within 72 hours. If parameter does not return to normal in 72 hours, parameter moves to Action Level 2.

Action Level 2

• Parameter is to be returned to normal values within 24 hours. If parameter does not return to normal in 24 hours, parameter moves to Action Level 3.

Action Level 3

• Parameter is to be returned to normal values within 4 hours. If parameter does not return to normal in 4 hours, a controlled shutdown of the unit shall be initiated.

- Abnormal is condition between what is considered normal cycle water chemistry and action level 1.
 Operation of unit is limited to two weeks before moving into
 - action level 1 unless an extension is granted

Condensate Limits

Sample Point	Parameter	Normal Value	Abnormal	Action Level 1	Action Level 2	Action Level 3	Immediate Shutdown of Unit
Total Hotwell	Cation Conductivity (mmho)	< 0.20	> 0.20	NA	NA	NA	NA
Total Hotwell	Sodium (ppb)	< 3.0	> 3.0	NA	NA	NA	NA
Total Hotwell	Dissolved Oxygen (ppb)	< 20	> 20	NA	NA	NA	NA
Total Hotwell	Silica (ppb)	< 20	> 20	NA	NA	NA	NA
Total Polisher Effluent	Cation Conductivity (mmho)	< 0.10	0.1-0.2	>0.20	> 0.3	> 0.65	NA
Total Polisher Effluent	Sodium (ppb)	< 3.0	NA	> 3.0	> 6.0	> 12.0	>24.0
Total Polisher Effluent	Silica (ppb)	< 5.0	> 10	NA	NA	NA	NA
Total Polisher Effluent	Sulfate (ppb)	< 3.0	NA	> 3.0	> 6.0	> 12.0	> 24.0
Total Polisher Effluent	Chloride (ppb)	< 3.0	NA	> 3.0	> 6.0	> 12.0	>24.0

Feedwater Limits

Sample Point	Parameter	Normal Value	Abnormal	Action Level 1	Action Level 2	Action Level 3	Immediate Shutdown of Unit
Economizer Inlet	Cation Conductivity (mmho)	< 0.1	0.1 - 0.2	> 0.2 Note 1	> 0.3 Note 2	> 0.65	> 2.0 mmho (5 min.) > 5mmho (2 min.)
Economizer Inlet	Sodium (ppb)	< 3.0	NA	> 3.0	> 6.0	> 12.0	> 24.0
Economizer Inlet	Chloride (ppb)	< 3.0	NA	> 3.0	> 6.0	>12.0	> 24.0
Economizer Inlet	Iron (ppb)	< 3.0	> 3.0	NA	NA	NA	NA
Economizer Inlet	Copper (ppb)	< 3.0	> 3.0	NA	NA	NA	NA
Economizer Inlet	Suspended solids (ppb)	< 10.0	10.0 - 35.0	> 35.0	>50.0	> 100	> 150
Economizer Inlet	pH	8.8 - 9.0	8.1-8.8	NA	8.0	7.5	< 7.0
Economizer Inlet	Silica (ppb)	< 10.0	10.0 - 20.0	> 20.0	> 30.0	> 40.0	> 50.0
Economizer Inlet	Sulfate (ppb)	< 3.0	NA	> 3.0	> 6.0	>12.0	> 24.0
Economizer Inlet	Dissolved Oxygen (pbb)	30 - 150	< 30.0	NA	NA	NA	NA

Main Steam Limits

Sample Poinr	Parameter	Nor ma] Val ue	Abnormal	Act ion Le vel 1	Acti on Leve 12	Act ion Lev el 3	Immediate Shutdown of Unit
Main Steam	Cation Conductivity (mmho)	<0.10	0.10-0.20	>0.20	>0.30	>0.65	> 2.0 MMLIO (5.inin.) >5 TNRIIHN (2 MIN)
Main Steam	Iron (ppb)	< 30	>30	NA	NA	NA	NA
Main Steam	COPPER (PPB)	< 3 0	>30	NA	NA	NA	NA
Main Steam	Sodium (FFB)	<3.0	NA	>3.0	>6.0	>12.0	>24.0
Main Steam	Silica (ppb)	<10.0	10.0-20 0	>20.0	>30.0	>40 0	>50.0
Main Steam	Chloride (ppb)	<30	NA	>30	><5.0	>12.0	>24.0
Main Steam	Sulfate (ppb)	<30	NA	>10	>6.0	>12.0	>24.0
	A CONTRACT OF A CONTRACT			1.1.1.1.1			

Cycle On-line Chemical Instrumentation

Cycle Instrumentation

All chemical instrumentation needs to be alarmed and

displayed in the main control room

 A temperature control unit should be supplied for secondary cooling of the sample lines to ensure cycle samples are maintained at 25 C

Cycle Instrumentation

Hot well cation conductivity mounted locally on each condenser

half

- Condensate cation conductivity, sodium
- Common condensate outlet sodium, silica, specific

conductivity

Cycle Instrumentation

- Deaerator Inlet Dissolved oxygen
- Deaerator Outlet Dissolved oxygen
- Economizer Inlet Cation conductivity, specific conductivity, pH
- Main Steam Cation conductivity, specific conductivity
- High Pressure Heater Drain Dissolved oxygen or ORP (only need to monitor one of the drains)
- Reclaim/Miscellaneous Drain Tank cation conductivity mounted locally

Chemistry Program

The Basis for Cycle Chemistry Control

- To form the proper protective passive layer.
- To protect this passive protective layer during operation.
- To protect this passive protective layer during shutdown.

Protective Passive Layer

Protective Passive Layer

- All boiler tube and turbine blade failures influenced by cycle water chemistry have the breakdown of the passive protective layer as part of the failure mechanism.
- If you protect your protective layer 24/7 seven days a week 365 days a year, you will not have boiler or turbine blade failures due to cycle chemistry.

Water Chemistry Influence on Boiler Tube Failures of Supercritical Units

- Corrosion Fatigue
- Pitting
- Stress Corrosion Cracking
- Supercritical Water wall Cracking

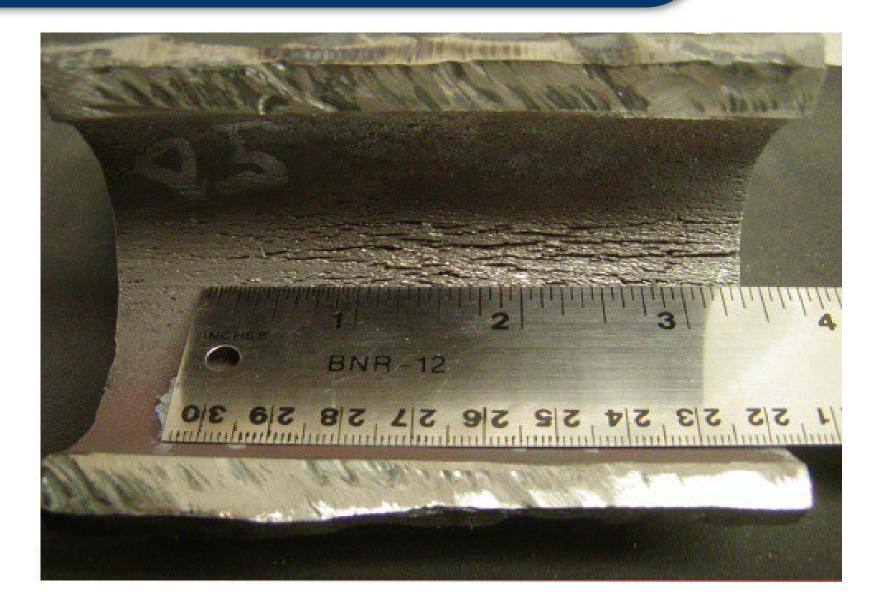
Corrosion Fatigue

Cracking mechanism in which cracks initiate and propagate due to combination of cycle tensile stress and environmental which is corrosive metal

≻□ Process of developing cracks

- Bretel iron oxide layers fractures, opening microsocopic cracks through metal surface
- Exposed metal at the root of crack oxide forms a notch
- During cycle of tensile stress, the oxide fractures at the notch, and cracks are depend
- The cycle continuous a wedge shaped cracks propagate through the metal

Corrosion Fatigue



Cause:

- Rapid cycle cooling
- Rapid startup and shutdown
- Operation at low pH and excessive high O2 promote pitting. This pit serve as stress concentration to initiate corrosive fatigue cracks

This is Corrosion Fatigue

This is Corrosion Fatigue – How Operators Make a Difference

- Control of dissolved oxygen Ensure unit has been paralleled for a minimum of 2 hours prior to closing DA vent.
- Control of economizer inlet pH trip unit when EI pH drops below 7.0
- Stress, heat up and cool down rate do not exceed OEM recommendations

steag

Pitting and Stress Corrosion Cracking

- Sulfate and/or Oxygen + water
- Happens when unit is shutdown
 - Operation at low pH level or excessive high O2 promotes pitting

Pitting - How Operators Make a Difference

Ensure deaerator vent is open and cycle pH is increased on

removal of unit from service

- Trip unit if EI cation conductivity is 2.0 m mho for 5 minutes or
 5.0 mmho for two minutes.
- Trip unit if EI pH drops below 7.0.

Stress Corrosion Cracking

- Metal failure resulting from a combination static tensile stress and a specific corrodant to which metal is sensitive
- Chlorides + Water
- Initiated on shutdown
- Propagates during operation

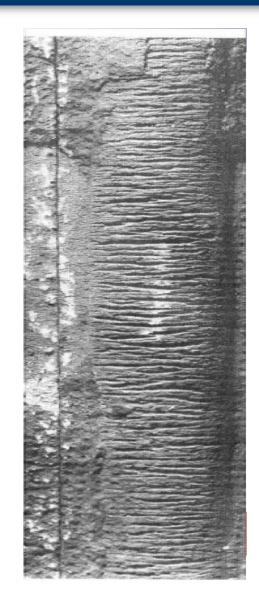
Stress Corrosion Cracking - How Operators Make a Difference

Ensure deaerator vent is open and cycle pH is increased on

removal of unit from service

Trip unit if EI cation conductivity is 2.0 mmho for 5 minutes or

5.0 mmho for two minutes.


• Trip unit if EI pH drops below 7.0.

- Damage generally forms as regular, parallel cracking, typically oriented circumferentially.
- The primary root cause is the buildup of excessive internal deposits in the tubes.
- Thermal or stress cycles with heavy internal deposits leads to supercritical waterwall cracking

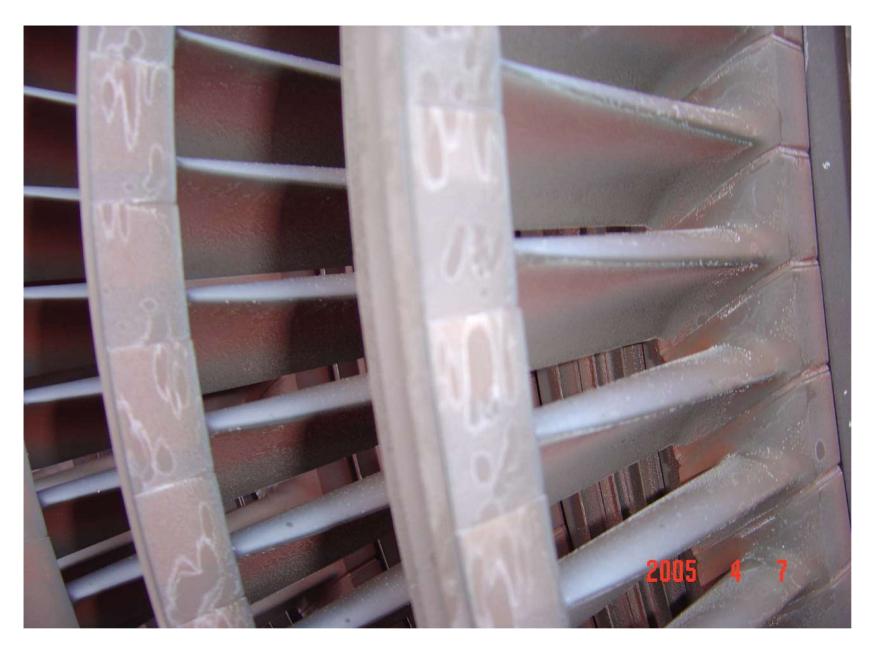
Supercritical WaterWall Cracking

Supercritical WaterWall Cracking – How Operators Make a Difference

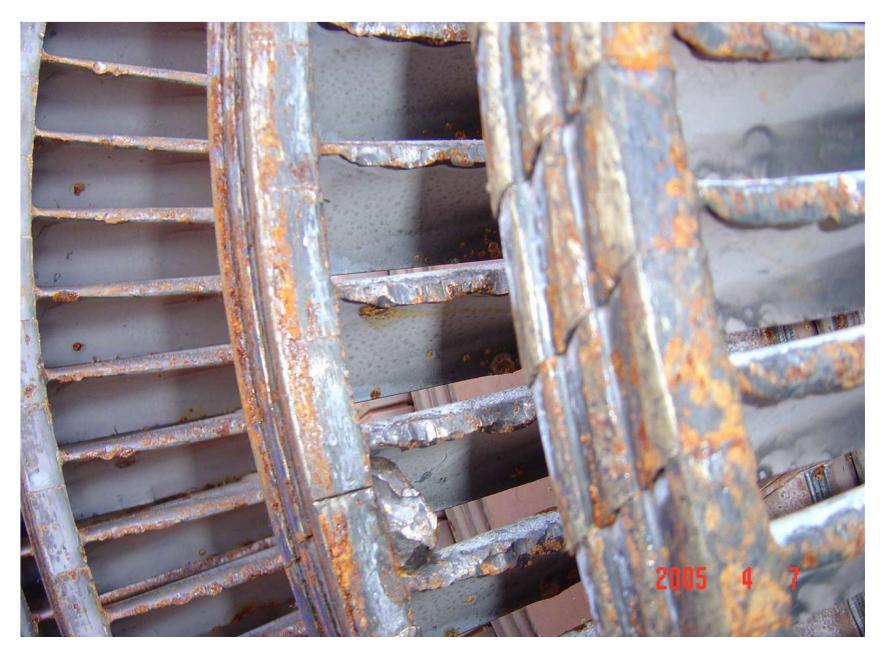
Trip unit if EI cation conductivity is 2.0 mmho for 5 minutes

or 5.0 mmho for two minutes.

• Trip unit if EI pH drops below 7.0.


Turbine Deposition

LP Turbine Rotating Blade



steag

Deposition caused by Steam Chemistry

- Causes include sodium (El sodium analyzer), chlorides (El cation conductivity analyzer), and sulfates (El cation conductivity analyzer) within a moist environment.
- These contaminants can lead to pitting which can turn into stress corrosion cracking or corrosion fatigue turbine blade failures.

Steam Chemistry

- Silica contamination will deposit on the back end of the LP
 - turbine. Silica will cause some efficiency loss of the LP turbine.
- Silica needs to be maintained below 10 ppb in steam. (Silica
 - Analyzers)

Steam Chemistry -How Operators Make a Difference

- Trip unit if Eco inlet cation conductivity is 2.0 mmho for 5 minutes or 5.0 mmho for two minutes.
- Trip unit if El pH drops below 7.0.
- Trip unit if El sodium increases above 24 ppb (action level
 - 1 starts at sodium > 3ppb)
- Analyzer alarms