

Flexibility replaced efficiency as a technology driver

Delhi, Mumbai, Hyderabad, August/September 2015

Dr. Oliver Then, Head of Power Plant Technologies

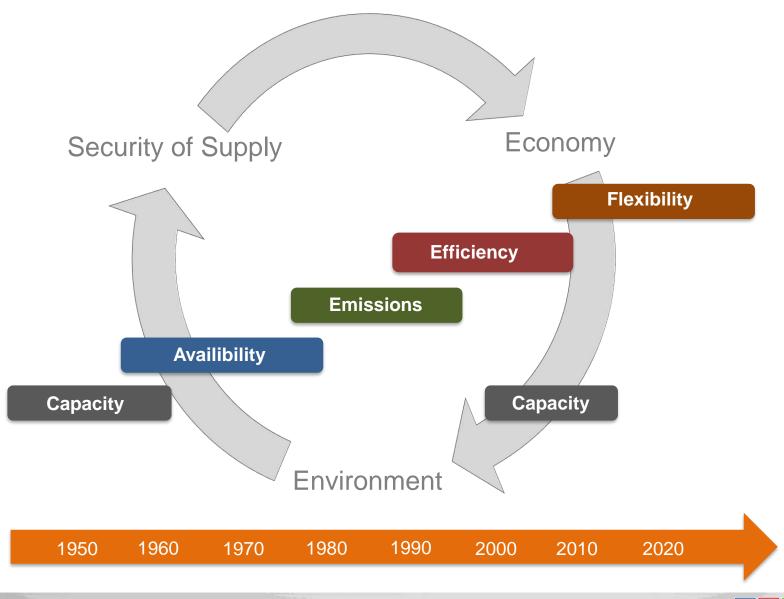
Introduction: drivers in the energy sector

Importance of flexibility

Dynamics and operational flexibility

Fuel flexibility

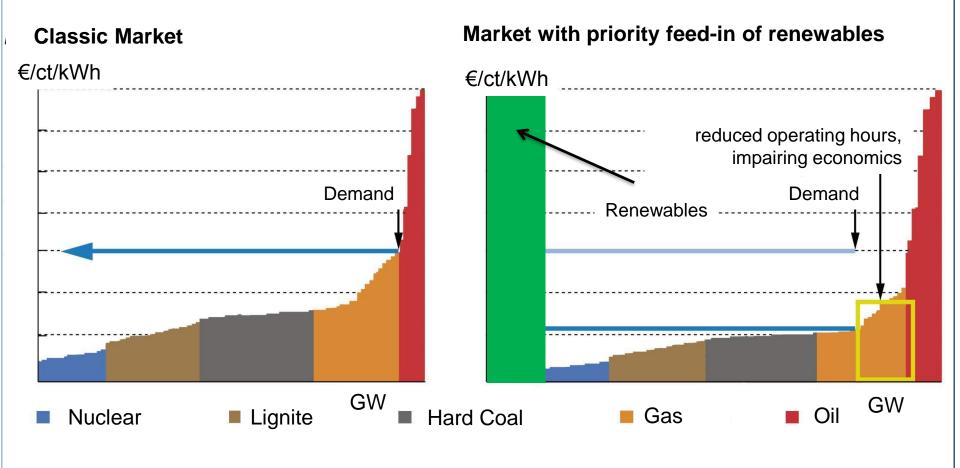
Thermal Storage


Efficiency developments

Summary

VGB PowerTech e.V.|FOLIE 2

the second s


<u>4</u>

🖪 🖪 🕍

Merit order: missing-money-problem

POWERTECH

Example for the market development

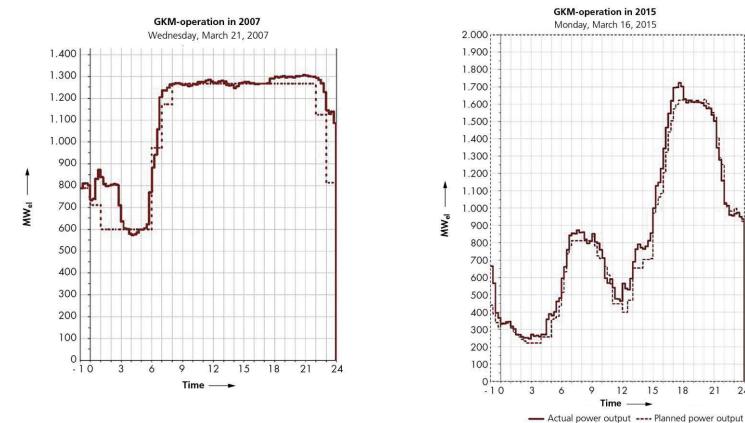
Consequences of the merit order distortion are lower wholesale prices and less operating hours.

VGB PowerTech e.V.|FOLIE 4

18

9

12

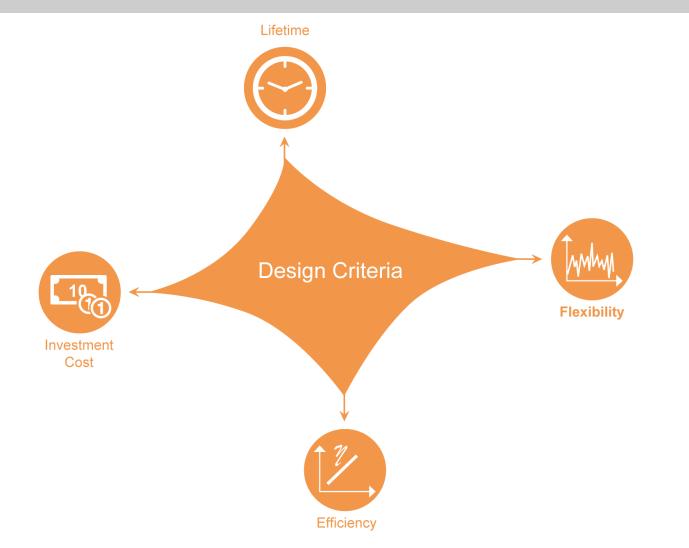

Time _

15

21

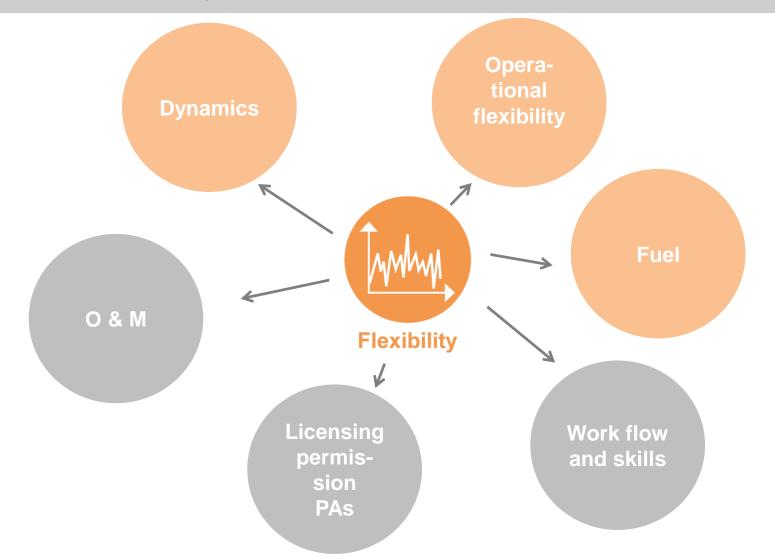
24

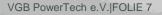
Example Coal-fired Power Plant GKM (all units)



Is the Energy-only market the right market design to stimulate and ensure investments and operation of conventional power plants in the long-term?

VGB PowerTech e.V.|FOLIE 5


Design criteria for future plants


The future design concepts are determined by costs, lifetime requirements, efficiency and flexibility. The prioritization of these criteria depends on the value of flexibility.

What does flexibility mean?

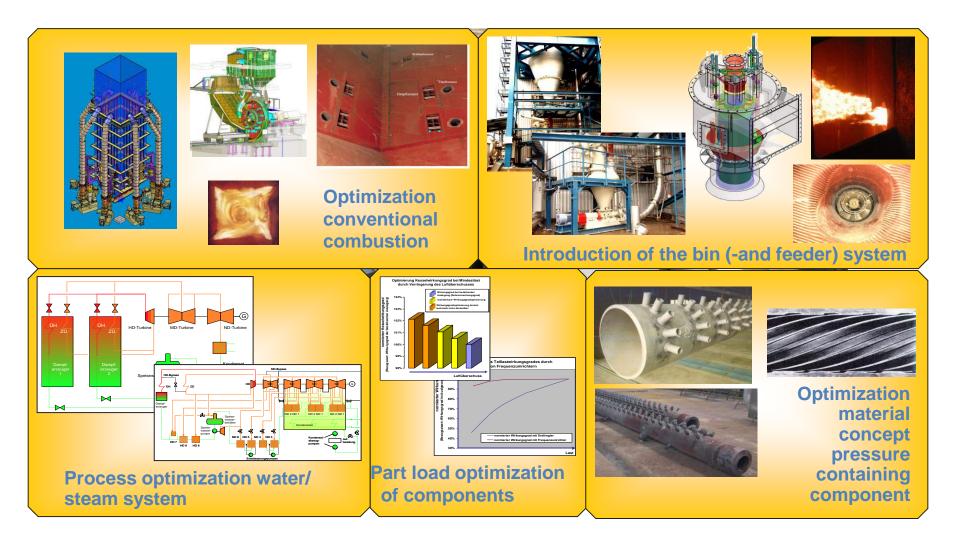
Flexibility is more than technology. It comprise aspects from system stability, design, operational concepts to shift organization and personal skills.

Dynamics

- high operational gradients (load change rate)
- short ramp-up time for minimal and nominal load
- short minimal stand-still time

Operational flexibility

- high number of start-ups and load cycle at reduced life-time consumption
- Iow minimal load with high efficiency
- uniform high-level efficiency-profile at a wide load range


Fuel flexibility

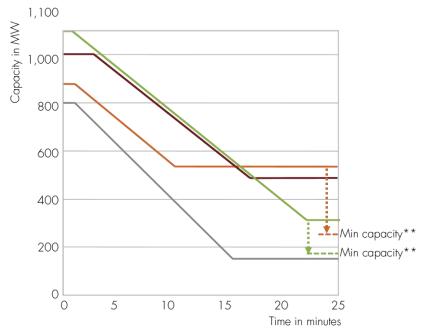
- high plant availability in spite of coal blending and imported coal
- coal treatment technologies and plant modifications (e.g. combustion processes)
- biomass co-firing with a secure supply chain

The flexibility potentials are limited by emission and dew-point values, efficiency and lifetime requirements as well as the minimum steam flow.

Source: Vattenfall

/ 🛃 🛃 🚵 🚮

Main flexibility contributors are: high load gradients, low minimum load, short ramp-up times


Plant type	Hard-coal	Lignite	CCGT	Gas Turbine		
Load gradient [% / min]	1.5 / 4 / 6	1 / 2.5 / 4	2/4/8	8 / 12 / 15		
in the load range [%]	40 to 90	50- 90	40* to 90	40* to 90		
Minimum load [%]	40 / 25 / 20	60 / 50 / 40	50 / 40 / 30*	50 / 40 / 20*		
Ramp-up time Hot start <8 h [h]	3 / 2.5 / 2	6/4/2	1.5 / 1 / 0,5	< 0.1		
Ramp-up time Cold start >48 h [h]	10 / 5 / 4	10 / 8 / 6	4/3/2	< 0.1		
Source: VDE usual value / state of the art / potential *as per emission limits for NOx and CO						

Thermal power plants are able to significantly contribute to a modern energy system. Technology development is focused on realizing the potentials for flexibility.

Dynamics and operational flexibility

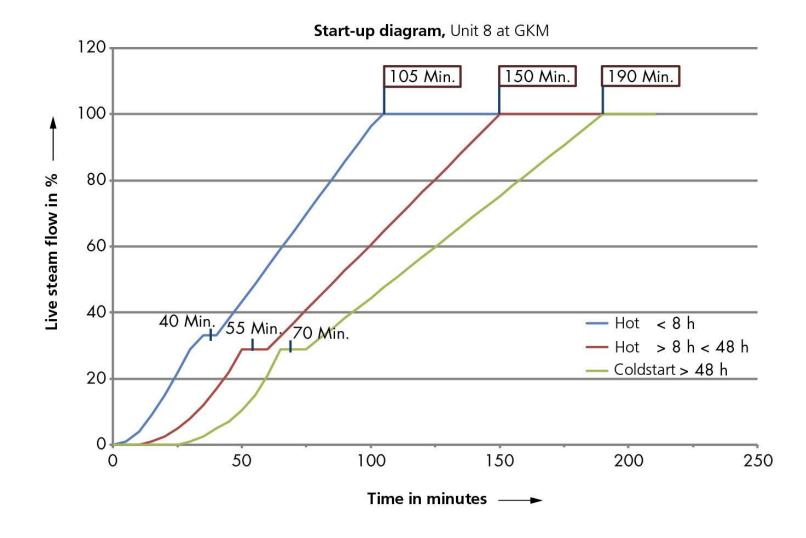
Comparison of flexibility and ramp capacities of state-of-the-art CCGT and lignite-fired power plants

Max capacity	~ 1,000 MW
Min capacity	~ 500 MW
Max ramp rate	+/- 30 MW/min
CCGT	
Max capacity	~ 2 x 440 MW
Min capacity	~ 520*/260** MW
Max ramp rate	+/- 32 MW/min
BoAplus	
Max capacity	~ 2 × 550 MW
	~ 2 x 550 MW ~ 350*/175** MW
Min capacity	
Min capacity Max ramp rate	~ 350*/175** MW
Max capacity Min capacity Max ramp rate Hard coal Max capacity	~ 350*/175** MW
Min capacity Max ramp rate Hard coal	~ 350*/175** MW +/- 30 MW/min

High and fast ramp capabilities are flexible and complement intermittent renewables.

* Operation with two boilers ** Operation with one boiler *** BoA - optimised operation of a lignite-fired power plant.

Technical measures to increase of operational load gradient:

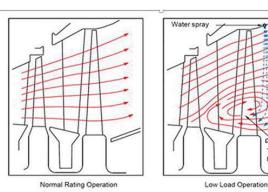

→ separation of grinding and combustion, decreasing wall-thickness and aligned component design

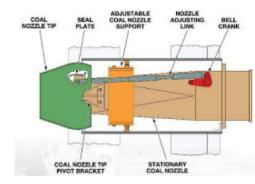
Technical measures to reduce the minimal load:

→ increase of numbers of mills, optimization of grinding process and optimized combustion process (e.g. flame detection)

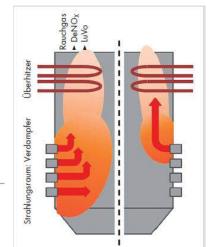
Example Coal-fired Power Plant GKM (Unit 8)

Typical technical measures :


→ Boiler

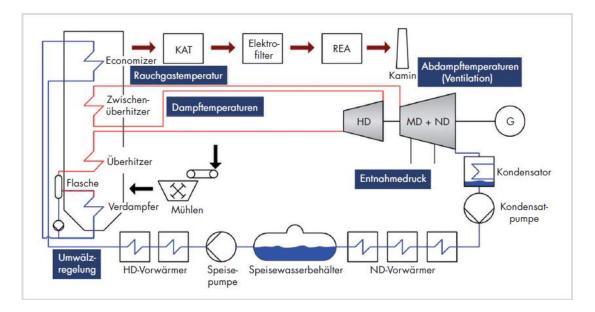

low minimum load thus low thermal firing capacity

- Increase of numbers of mills
- Optimization of grinding and combustion process
- Installation of tilting burners
- Switch to 1-mill operation
- → Water Steam Cycle
 - Minimum feedwater flow
 - Boiler temperature profile
- → Turbine
- → Flue Gas Cleaning
- → Auxiliaries
 - Minimum load of pumps, fans and other aux.equipm.
 - Protection systems (I&C)


51

Turn-up

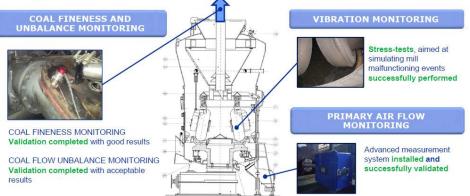
Region

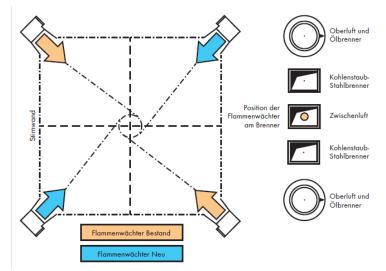


low-load operation: Basic considerations

POWERTECH

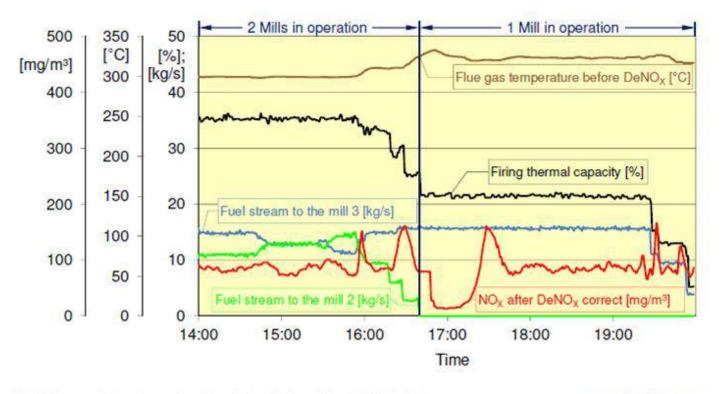
Typical challenges	Problem	Solution	Technical measure
Flame stability and flame detection	Flame pulsation and blow-off	 Modify burner operation Modify burner Support burners (oil/gas) Additional flame detectors 	 Imrpove fuel to air ratio Increase mixture and swirl Reduce cooling air flows Change pulverization install flame holder rings
Thermal firing capacity per burner level	Mill minimum load	 Ensure minimum coal content in burner fuel/air flow Ensure equal coal dust distribution to burners Reduce cooling air flows Improve positioning accuracy of air control flaps 	 Reduce cooling air flows Avoid leaking air flaps Modification of characteristic curves of flap drives and more accurate flow and position measurements
Stable and equal distribution of feed water in evaporator	Over-heating and excessive tension in boiler tubes	 Check for design buffer in minimum feedwater flow Use circulation mode 	
Boiler temperature profile changes	High temperature gradients in thick- wall components and turbine	 Minimize temperature changes Check turbine ventilation protection 	 Improve/extend measurements in water/steam cycle Optimize mode change procedure between once- through and circulation operation
Higher dosing of NH3 in SCR due to low flue gas temperature (~ < 280 °C)	NH3 slip Fouling/corrosion	 Additional flue gas re-heating Improve dosing control 	 Eco-Bypass water- or flue gas side Use higher burner level Use higher air ratio
FGD separation ratio	Residual time of droplets decreases	 Increase L/G ratio 	 Improve pump operation scheme



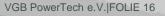

Online mill monitoring:

Reduce minimum load

Advanced diagnostic and management system to reduce mill load
Target: 15 - 20%

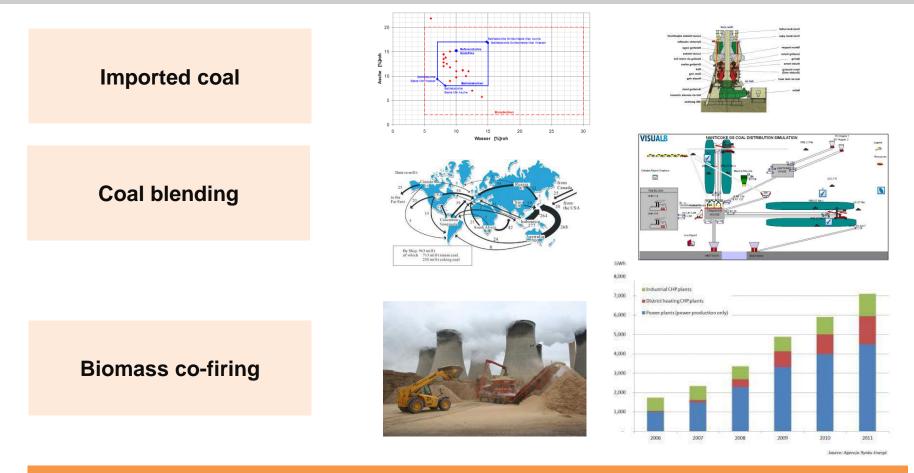


Additional flame detectors:



Operation at minimum technical load by change from two to one mill in service

V15 – De sign concept and operation experience of recent hard ocal fined power boilers – 22/04/2015 – P 15 © X.1704.2013. At optimizen with apply is any particle project that it board operation in service and the relation of the second sec


Source: RWE/Alstom

🔏 🖪 🔛 🏄

Fuel flexibility

POWERTECH

Challenges:

- \rightarrow high plant availability in spite of changing fuels
- \rightarrow necessity of plant upgrades and technological modifications (e.g. combustion, FGC)
- \rightarrow secure supply chain (e.g. for biomass)