Voltage distribution (400 kV) – scenario 1

1

Scenario 1.a (2011):

Voltages within limits

Scenario 1.b (2015):

- Severe voltage drop in western region
- Additional measures necessary, Redispatch actions

Scenario 1.c (2020):

- Severe voltage drop in Western and Southern region
- Additional measures necessary, 3 Gvar operational equipment

Stationary simulations

- Voltages within the transmission grid depend on line utilization
- Severe voltage drops within scenario 2020
- Grid calculation with optimized operation of HVDC lines
- Voltage increase by decraesing the load within the AC-grid

Scenario 2040

Overview

European power system

VGB research project

Stationary aspects

Dynamic aspects

Outlook

Conclusions

Dynamic simulations

- Excitation of the system by a major power imbalance
- Simulation of the transient grid dynamics

Comparison of transient frequency behavior – scenario 1

Itk

Transient frequency behavior – scenario 1 excitation within Germany

Transient voltage behavior – Scenario 1 excitation of 500 Mvar

 Significant impact of increasing intermittent generation on transient voltage behavior

Inertial response in future

Conclusions

ıfk

Stationary aspects

- Transmission limits violated on a few lines
- Severe voltage drops in different regions due to increasing power flows
- Additional measures necessary, especially for voltage control
- HVDC lines contribute to system stability

Transient system dynamics

- Transient frequency behavior shows no significant changes concerning the whole system by 2020 (joint-action)
- Local frequency deviations are increasing
- Significant impact on transient voltage behavior can be seen
- Possible impact on synchronous generators of power plants

Overview

European power system

VGB research project

Stationary aspects

Dynamic aspects

Outlook

Conclusions

Bottleneck of DPGS-integration

DPGS: Decentralised power generation systems

Bottleneck of DPGS-integration

Bottleneck of DPGS-integration

lfk

Dipl.-Ing. Florian Gutekunst

Phone: +49 711 / 685 65580

florian.gutekunst@ifk.uni-stuttgart.de

University of Stuttgart Institute of Combustion and Power Plant Technology Department Power Generation and Automatic Control Pfaffenwaldring 23 70569 Stuttgart Germany

