CONFERENCE ON WATER OPTIMISATION IN THERMAL POWER PLANTS

OPTIMISATION OF WATER USAGES IN THERMAL POWER PLANTS AND A STUDY ON DRY COOLING SYSTEM

S. K. Thakur, Chief Engineer (I/C), TE&TD Division, CEA Dr. L. D. Papney, Director, TE&TD Division, CEA

1

India Habitat Centre, N. Delhi 12-13 June, 2013

WATER AVAILABILITY ASPECTS

- > WATER IS A KEY INPUT REQUIREMENT FOR THERMAL POWER GENERATION.
- > AVAIALBLE WATER RESOURCES ARE FIXED AND WATER REQUIREMENT IS INCREASING.
- > WATER HAS PRIORITY FOR DRINKING AND IRRIGATION OVER THAT FOR POWER GENERATION.
- AVAILABILITY AND ALLOCATION OF WATER FOR THERMAL POWER PLANTS HAS BEEN REDUCING.
- LOW GRADE WATER IS ALSO BEING SUPPLIED AS INPUT RAW WATER TO THE THERMAL PLANTS.

NEED FOR OPTIMISING/ MINIMISING WATER CONSUMPTION IN THERMAL PLANTS

- THERMAL CAPACITY ADDITION PROJECTED AT ABOUT 15000 MW/ANNUM FOR NEXT TWO DECADES.
- LARGE NUMBER OF SITES REQUIRED WITH AVAILABILTY OF ADEQUATE WATER.
- DIFFICULTIES BEING FACED IN SELECTION OF NEW SITES IN DIFFERENT STATES DUE TO WATER SCARCITY.

CONSTRAINTS IN AVAILABILITY OF SWEET WATER FOR COASTAL SITES.

WATER OPTIMISATION/ MINIMISATION IS NECESSARY TO ENHANCE PLANT SITING OPTIONS

TYPICAL WATER USES IN COAL BASED THERMAL POWER PLANTS

- COOLING OF CONDENSER AND SECONDARY COOLING OF PHEs IN ECW SYSTEM.
- **POWER CYCLE MAKE UP.**
- **WET ASH DISPOSAL.**
- **COAL DUST SUPPRESSION.**
- > AIR CONDITIONING AND VENTILATION.
- OTHER USES VIZ. POTABLE USE, PLANT WASHING, GARDENING.

COOLING WATER SYSTEM

Once through system:

Permissible for coastal sites with temperature rise of 7°C over temperature of receiving water body.

Closed cycle open recirculation system using cooling towers:

Requires make up water to compensate for loss of water due to evaporation, drift and blow down.

Blow down is required to maintain a desired level of COC in CW system.

CT MAKE-UP & BLOWDOWN

• CT make-up water, $M = \underline{E \cdot C}$ (C-1)

Blow down water,
$$B = \underline{E} - D$$

(C-1)

Where E = Evaporation, D = Drift, C = COC of CW system

VARIATION OF CT MAKE UP WITH COC (500 MW UNIT)

	Cycle of Concentration (C)				
Description	1.6	2.0	3.0	4.0	5.0
Evaporation, m ³ /h	1020	1020	1020	1020	1020
(%)	(1.7)	(1.7)	(1.7)	(1.7)	(1.7)
Drift, m ³ /h	30	30	30	30	30
(%)	(0.05)	(0.05)	(0.05)	(0.05)	(0.05)
Blow down, m ³ /h	1670	990	480	310	225
(%)	(2.783)	(1.65)	(0.8)	(0.517)	(0.375)
Make up, m ³ /h	2720	2040	1530	1360	1275
(%)	(4.533)	(3.4)	(2.55)	(2.267)	(2.125)

BROAD FEATURES GOVERNING PLANT WATER REQUIREMENT

- Source/ quality of raw water.
- Type of CW system.
- > Quality of coal.
- Plant design aspects.
- Use of dry fly ash.

Treatment/ reuse of waste water.

WATER REQUIREMENT TRENDS

- Earlier water was taken as an assured input.
- Plant used to have liberal considerations and high design margins.
- Plant consumptive water with cooling tower used to be about 7 m³/h/MW without ash water recirculation and 5 m³/h/MW with ash water recirculation.
- In recent past, consumptive water requirement used to be taken as 3.5- 4m³/h per MW.

CONSIDERATIONS FOR REDUCTION OF PLANT WATER REQUIREMENT

- New plants to progressively achieve 100% utilisation of fly ash by 4th year of plant operation.
- COC of 5 for CW system operation
- Clarifier sludge water and filter backwash to be recycled.
- Boiler blowdown to be used as part of CT make up.
- Power cycle make up as 2% of BMCR flow.
- Waste water to be used for coal dust suppression and gardening.
- Dry cooling system as per constraint in availability of raw water.

PLANT OPERATION CONSIDERATIONS

- Fly ash disposal in wet slurry mode or HCSD mode during initial period of plant operation.
- Bottom ash disposal in wet slurry mode.
- 70% recovery of ash pond water.
- Ash pond water recovery expected to be available within one year of plant operation.

CONSIDERATIONS WITH DRY COOLING SYSTEM

- Condenser cooling by dry cooling system.
- ACW system to be based on wet cooling tower.
- Fly ash disposal in dry mode/ HCSD mode.
- Bottom ash disposal in wet mode.

CASES CONSIDERED

> Inland power plant with wet cooling tower.

- Inland power plant with dry cooling system.
- Coastal power plant based on sea water.

WATER BALANCE DIAGRAM 2 X 500 MW **COAL BASED WITH WET COOLING TOWER**

WATER BALANCE DIAGRAM 2 X 500 MW COAL **BASED TPP WITH DRY COOLING SYSTEM**

ANNEXURE N

WATER BALANCE DIAGRAM 2 X 500 MW COASTAL TPP

MINIMISED PLANT WATER REQUIREMENT FOR 2 x 500MW PLANT (M³/H)

		Wet cooling	Dry cooling	Coastal plant
1.	CT make up	2550*	174	-
2.	Bottom ash handling	90**	90**	-
3.	DM plant input	85	85	85
4.	Service & potable water	252	252	282
5.	Clarifier sludge	90	15	10
6.	Reservoir evaporation	30	5	3
7.	Recovered sludge water & filter backwash	(-) 88	(-)19	(-)14
8.	Boiler blow down used as CT make up	(-) 20	-	-
9.	Total (1+3+4+5+6+7+8)	2899	512	366
10.	Say	3000	550	400
11.	Additional requirement during initial period	600	200	-

* Includes 450m³/h CT blow down.

**To be met from available CT blow down and other waste waters.

WASTE WATER GENERATION IN 2 x 500MW PLANT (M³/H)

		Wet cooling	Dry cooling	Coastal plant
1.	Unused CT blow down/ boiler blow down	350	-	20
2.	DM plant & CPU regeneration	10	10	10
3.	Treated effluent of plant drains etc.	58	31	29
4.	Waste water utilized for coal dust suppression/ ash disposal	(-)50 (coal dust suppres sion)	(-)22 (ash disposal)	(-)20 (coal dust suppres sion)
5.	Waste water utilized for gardening	(-)5	(-)5	(-)5
6.	Waste water to be disposed from CMB (1+2+3+4+5)	363	14	34

SUMMARY ON PLANT WATER REQUIREMENT: WET COOLING SYSTEM

- 3.6m³/h per MW during initial period of plant operation with fly ash disposal in wet mode (without ash water recovery).
- 3 m³/h per MW after recovery of ash pond water, expected to begin within one year of plant operation.
- If fly ash is disposed in dry mode/ HCSD mode, 3m³/h per MW will be adequate for plant operation right from beginning.

SUMMARY ON PLANT WATER REQUIREMENT: DRY COOLING SYSTEM

> Fly ash disposal in dry mode:

0.75 m³/h per MW during initial period of plant operation without recovery of bottom ash water.

0.55 m³/h per MW after recovery of bottom ash water, expected to begin within one year of plant operation.

> Fly ash disposal in HCSD mode:

0.9 m³/h per MW during first year of plant operation.

0.7 m³/h per MW in subsequent period.

About 80% reduction in plant water requirement when using dry cooling system. 20 SUMMARY ON PLANT WATER REQUIREMENT: COASTAL PLANTS

- **Fresh water requirement 0.4 m³/h per MW.**
- Sea water to be used for process cooling and ash disposal.
- In case, desalination plant is installed, required fresh water shall be generated from sea water.

STUDY ON DRY CONDENSER COOLING SYSTEM

KEY FEATURES OF DRY COOLING SYSTEM

- Operate on the basis of sensible cooling with ambient dry bulb temperature as reference temperature.
- Steam condensation temperature = ambient dbt + initial temperature difference (ITD), governed by size of cooling equipment.
- Turbine back pressure achieved is higher and power output of the unit is reduced.

Cont'd 2

Direct dry cooling: Air cooled condenser

- LP turbine exhaust steam is directly cooled inside a system of finned tube bundles by ambient air using forced draft fans.
- No Terminal temperature difference (TTD) is involved.

Cont'd 3

Indirect dry cooling: Surface condenser

- Steam is cooled in a surface condenser by circulating water which in turn, inside a system of finned tube bundles, is cooled by ambient air using fans or a natural draft tower.
- Terminal temperature difference (TTD) is involved.

Cont'd 4

Indirect dry cooling: Jet condenser

- Steam is cooled by direct mixing with DM water in a jet condenser. A part of mixed hot DM water is sent to power cycle and rest is pumped to a system of finned tube bundles for cooling by ambient air using a natural draft tower.
- Negligible TTD is involved.
- Hydraulic turbine can be used to recover pressure head of circulating water.

Hybrid system

Employs both wet cooling and dry cooling system provisions:

- When water is not available, plant is operated with dry cooling system.
- When water is available, cooling system is switched over to wet cooling system.

AIR COOLED CONDENSER WITH FANS

DIRECT AIR-COOLED SYSTEM

INDIRECT DRY COOLING WITH SURFACE CONDENSER

29

INDIRECT DRY COOLING WITH JET CONDENSER- HELLER SYSTEM

HYBRID (DRY/WET) COOLING SYSTEM

DRY COOLING SYSTEM ANALYSIS METHODOLOGIES

Same unit output with higher size BTG plant.

Same size BTG plant with lower unit output for dry cooling system plant.

CASE STUDY

- Study has been carried out for a 500 MW size unit plant considering same size BTG plant for wet cooling and dry cooling.
- Inputs for wet cooling system obtained from M/s NTPC.
- Inputs for dry cooling system obtained from:
 M/s SPX/Thermax for ACC and
 M/s GEA-EGI/Energo for Heller system
- Inputs on BTG system obtained from M/s BHEL.

DESIGN INPUT DATA FOR DRY COOLING SYSTEM

Size of BTG: 500 MW with wet cooling; 0.1 ata(a) back pressure

Design ambient dbt, °C	38			
ITD, °C	20	22	24	26
Steam condensation temp. °C	58	60	62	64
Condenser pressure, ata (a)	0.18	0.2	0.22	0.24
Unit output, MW	464.6	463.7	462.8	461.9
% short fall	7.1	7.3	7.4	7.6
Design condenser heat load,	581.7	582.1	582.7	583.6
million Kcal/h (MWt)	(676.5)	(677)	(677.7)	(678.7)

INPUT DATA- Reference Values

Water requirement	3m ³ /h/MW (wet cooling)
Distance of water source from plant	18 km
Water storage	45 days
Auxiliary power consumption for	6.5% for IDCT based plant
wet cooling	6% for NDCT based plant
Unit heat rate for wet cooling	2425 kcal/kWh
Capital cost with wet cooling system	Rs. 5 crore/MW
O&M expenses for plant with wet cooling system	Rs. 13 lakh/MW/year

INPUT DATA- Tariff Calculations

Debt/ equity ratio	70:30
Interest rate	11%
Return on equity	15.5%
Plant PLF	85%
Fuel escalation	6 %
O&M escalation	5%
Discount rate	9.35%
Depreciation rate	5.28%

OPTIONS CONSIDERED

- 1. Load centre station with coal GCV of 4000 kcal/kg and coal cost of Rs. 2200 per ton.
- 2. Pit head station with coal GCV of 3600 kcal/kg and coal cost of Rs. 1000 per ton.

Wet cooling: NDCT	Dry cooling:ACC			
IDCT	Hellar system			

RESULTS OF THE STUDY

- Reduction in plant output by about 7%.
- Increase in capital cost per MW of the plant by about 10 to 14%.
- Increase in specific fuel consumption and specific CO₂ emission by about 7%.
- Auxiliary power consumption for plant with ACC about 6.8% as compared to 6.5% for reference plant with IDCT.
- O&M expenses marginally lower at about Rs. 12 lakh/year per MW over reference of 13 lakh/year per MW for wet cooling plant.

IMPACT ON LEVELISED TARIFF

	Differential Levelised Tariff (Rs/kWh)						
	Wet	ACC				Heller system	
Description	cooling tower	0.18 ata (a)	0.20 ata (a)	0.22 ata (a)	0.24 ata (a)	0.22 ata (a)	0.24 ata (a)
Plant at load centre	Base (NDCT)	0.31	0.30	0.31	0.30	0.34	0.33
	Base (IDCT)	0.32	0.31	0.31	0.30	0.34	0.34
Plant at pit- head	Base (NDCT)	0.21	0.20	0.20	0.19	0.23	0.23
	Base (IDCT)	0.21	0.20	0.20	0.20	0.24	0.23

Base levelised tariff : Rs.4/KWh at load centre, Rs.2.6/kWh at pit head

KEY FINDINGS

- Plant with dry condenser cooling requires only about 20% of the water that required for the plant with wet cooling.
- Dry cooling system result in unit heat rate increase by about 7% and accordingly specific CO₂ emission increases by about 7%.
- Levelised tariff is increased by 8-9% over base levelised tariff for the plant with wet cooling.
- Dry cooling systems are costly technologies and are not comparable to wet cooling systems on techno- economic considerations. These need to be considered only in case adequate water is just not available for power generation using wet cooling.

